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1 Introduction

In these notes we prove an existence theorem for a 1d model of hyperelasticity. A
crucial property that helps proving such existence theorems is the lower semiconti-
nuity of the total energy functional. As we shall show, a sufficient condition for the
total energy to be lower semicontinuous is convexity of the stored energy density.
For the various reasons discussed in lecture (or refer to [1]), convexity of the stored
energy functional is not appropriate for 3d-elasticity. Ball, in his seminal paper [2]
observed that polyconvexity of the stored energy functional implies lower semiconti-
nuity of the total energy. In 1d, however, polyconvexity and convexity are equivalent
and consequently the proof of existence is significantly simpler.

The existence theorem presented in this report relies on the direct method in the
calculus of variations [3, 4]. In order to rigorously understand this method we will
need to take a detour into certain concepts of functional analysis [5].

These notes are mainly based on [1] and [3]. For more details about the functional
analysis results, refer to [5].

2 Banach spaces and Weak topologies

Definition 1 [Banach space]. A vector space along with a norm, (V, ‖·‖) is a Banach
space if it is complete with respect to the norm-induced metric.
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Let V be a Banach space over R and denote its dual,

V ∗ := {L : V → R : L is continuous}.

The weak topology is the coarsest topology on V such that all the continuous linear
functionals remain continuous. We define the criterion for sequence convergence in
the weak topology:

Definition 2 [Weak convergence]. A sequence {vk} is said to weakly converge to
v ∈ V iff L(vk)→ L(v) for all L ∈ V ∗.

We denote weak convergence in the following way:

vk ⇀ v.

For infinite dimensional spaces the weak topology is always distinct from the topol-
ogy induced by the norm. In order to emphasise this difference, we will often use the
term strong topology to refer to the latter.

It is straightforward to see that strong convergence =⇒ weak convergence and con-
sequently, weak closure =⇒ strong closure. A sufficient condition for the converse to
hold is the following

Theorem 1. Let C ⊂ V be a convex set. Then weak closure ⇔ strong closure.

The proof of the above result relies on the geometric Hahn-Banach theorem, so we
will not be presenting it here.

The following result is crucial

Proposition 1. In a reflexive Banach space (i.e. the evaluation map V → V ∗∗ is
an isomorphism) a bounded sequence has a weakly convergent subsequence.

3 Lower Semi-continuity

Definition 3 [Epigraph of a function]. For a function f : V → R, the epigraph is
defined to be

epi(f) := {(v, y) : f(v) ≤ y}

Intuitively, the epigraph is everything lying above the graph of a function. We can
now define lower semi-continuity and sequential lower semi-continuity,
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Definition 4. A function, f is said to be lower semi-continuous if epi(f) is closed
in V × R. A function is sequentially lower semi-continuous if

f(v) ≤ lim inf
n→∞

f(vn)

for every sequence vn that converges to v.

Theorem 2 (Tonelli). Let h be a positive, convex, continuous function on R i.e.,

h : (0,∞)→ [0,∞),

Let V := {v ∈ L1(0, 1) : v > 0 a.e. in (0, 1)}, then the functional H : V → R defined
by

H(F ) =

∫ 1

0

h(F (X)) dX

is weakly lower semi-continuous.

Proof. First we will show that H is strongly lower semi-continuous on V and then
augment the result to show weak lower semi-continuity.

Since the strong topology is metrizable, lower semi-continuity and sequential lower
semi-continuity are equivalent. So let Fk → F in V . We want to show that∫ 1

0

h(F (X)) dX ≤ lim inf
k→∞

∫ 1

0

h(Fk(X)) dX.

First let us pass through a subsequence Fl to get

lim
l→∞

H(Fl) = lim inf
k→∞

H(Fk).

Since Fl → F in L1, there exists a subsequence Fm → F a.e. X ∈ (0, 1). Since h is
continuous, we have h(Fm(X)) → h(F (X)) a.e. X ∈ (0, 1). Using Fatou’s lemma,
then ∫ 1

0

h(F ) dX =

∫ 1

0

lim
m→∞

h(Fm) dX

≤ lim inf
m→∞

∫ 1

0

h(Fm) dX

= lim
l→∞

∫ 1

0

h(Fl) dX

= lim inf
k→∞

∫ 1

0

h(Fk) dX.
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It is also not difficult to see that H is convex on V . Let F1, F2 ∈ V

H(λF1 + (1− λ)F2) =

∫ 1

0

h(λF1 + (1− λ)F2) dX

≤
∫ 1

0

λh(F1) + (1− λ)h(F2) dX

= λH(F1) + (1− λ)H(F2)

Since H is strongly lower semi-continuous and convex, epi(H) is strongly closed
and convex, therefore it is weakly closed (from Theorem 1) and H is weakly lower
semi-continuous.

4 The Direct Method

Given an energy functional, E : V → R that is bounded below, our objective is to
minimise it over a set A ⊂ V , which we will refer to as the ‘admissible set’. Let
m := infw∈AE[w] > −∞ and choose fk ∈ A such that E[fk] → m. We call such
a sequence an ‘infimising’ sequence. Suppose fk had a convergent subsequence with
a limit in A. Using this, along with some continuity assumption on E we could
conclude the existence of a minimiser for E in A.

We have two issues here: the first is that in order to get a convergent subsequence,
we need some kind of compactness which is not easy in an infinite dimensional space.
The second is that it is not clear what kind of continuity assumption is required on
E. The answer in both cases lies in the weak topology.

Given certain growth conditions on the functional, it is possible to show that any
infimising sequence is bounded. Provided V is reflexive, fk has a subsequence that
converges in the weak topology i.e. fkn ⇀ f0. In this case, it is sufficient for E to be
sequentially weak lower semi-continuous for the existence of a minimiser:

E[f0] ≤ lim inf
n→∞

E[fkn ] ≤ m,

where the last inequality follows from E[fk]→ m. But m is the inf of E over A, so
m ≤ E[f0], thus E[f0] = m. If A is weakly closed, we may conclude that f0 ∈ A is
a minimiser of E.
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5 Existence theorem

We apply the direct method to a 1d hyperelastic model to show the existence of a
minimiser to the energy. Consider as the reference configuration the open interval
(0, 1). We will denote positions in the reference configuration by X. We look at
maps that take the reference configuration to the interval (a, b) where b > a with the
following properties:

• f(0) = a and f(1) = b,

• ‖f‖W 1,p(0,1) < ∞ or in other words, f is in the Sobolev space W 1,p(0, 1). The
norm above is defined as

‖f‖W 1,p(0,1) =

(∫ 1

0

|f |p dX +

∫ 1

0

|f ′|p dX

)1/p

with p > 1. The derivative f ′ is interpreted in the generalised sense,

• F (X) ≡ f ′(X) > 0 a.e. X ∈ (0, 1). This implies that f is globally invertible.

Our admissible set is therefore

A := {f ∈ W 1,p(0, 1) : f(0) = a, f(1) = b, F (X) > 0 a.e.}

We have the total energy functional,

E[f ] =

∫ 1

0

W (F (X)) dX −
∫ 1

0

b(X)f(X) dX.

The first term here represents total stored energy and the second term is due to body
forces (dead load). b(X) is assumed to be continuous on [0, 1]. W is continuous,
convex, positive and satisfies the growth condition W (F ) → ∞ as F → 0 or ∞. In
the latter case we specifically require that for k > 0 and p > 1:

W (F ) ≥ C + k |F |p . (∗)

The above condition is called coercivity. Note that the p in the definition of the
admissible set A is chosen a posteriori to equal the p in (∗). Also assume that
inff∈AE[f ] <∞

Theorem 3. Given the above assumptions, there exists f0 ∈ A that minimises E.
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Proof. First we show that the loading term is a bounded linear functional onW 1,p(0, 1).
Linearity is obvious. From the Morrey-Sobolev embedding theorem W 1,p(0, 1) is em-
bedded in C0(0, 1) so ‖f‖C0 ≤ C ‖f‖W 1,p .∫ 1

0

bf dX ≤ sup
(0,1)

|f |
∫ 1

0

b(X) dX = C̃1 ‖f‖C0 ≤ C1 ‖f‖W 1,p ,

where C1 > 0. Next we will use the coercivity inequality to show that E is bounded
below,

E[f ] =

∫ 1

0

W (F ) dX −
∫ 1

0

bf dX

≥
∫ 1

0

|F |p + C dX − C1 ‖f‖W 1,p (from (∗))

≥ C3 ‖f‖pW 1,p − C1 ‖f‖W 1,p + C2 (Poincare inequality)

≥ C4 ‖f‖pW 1,p + C5. (Since p > 1)

Hence E[f ] is bounded below. Consider an infimising sequence fk i.e. E[fk] →
inff∈AE[f ]. Using the above inequality,

E[fk] ≥ C4 ‖fk‖pW 1,p + C5.

Since E[fk] is a convergent sequence, it is bounded, therefore we have a uniform
bound on ‖fk‖W 1,p . Since W 1,p(0, 1) is a reflexive Banach space for p > 1, we
use Proposition 1 to conclude that fk has a weakly convergent subsequence i.e.,
fk ⇀ f0 weakly in W 1,p(0, 1). In particular this means that fk ⇀ f0 in Lp(0, 1) and
Fk = f ′k ⇀ f ′0 = F0 in Lp(0, 1).

It is straightforward to see that Fk ⇀ F0 in Lp(0, 1) implies Fk → F0 in L1(0, 1).
From Theorem 2 we know that the first term in E is weakly lower semi-continuous
with respect to L1(0, 1) and since it only depends on F (and not f), we can deduce
that it is weakly lower semi-continuous in W 1,p(0, 1). The second term as we have
shown is a bounded linear functional on W 1,p(0, 1) so it is by construction weakly
continuous. Hence E[f ] is sequentially weak semi-continuous on W 1,p(0, 1).

From the earlier discussion on the direct method, we thus have a candidate minimiser.
All that is left is to show that f0 ∈ A. Since W → ∞ as F → 0, it is clear that
F0 cannot be 0 on set of positive measure as this would imply the minimum energy
would be infinite (and we made the assumption that inff∈AE[f ] <∞). It is also not
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possible that F0 < 0 on a positive measure set. This can be shown by contradiction:
Suppose F0 < 0 on M ⊂ (0, 1) µ(M) > 0. We have from weak convergence, for all
g ∈ Lq(0, 1), ∫ 1

0

gFk dX →
∫ 1

0

gF0 dX.

Let g = χM (the characteristic function on M), then since Fk ≥ 0 a.e.,
∫ 1

0
gFk dX ≥ 0

for all k. However,
∫ 1

0
gF0 dX < 0, which is a contradiction.

Finally we would like to show that f0 saatisfies the boundary conditions. Consider
w ∈ A, then fk−w ∈ W 1,p

0 (0, 1), which is a closed linear subspace so from Theorem 1
it is weakly closed. hence f0 − w ∈ W 1,p

0 (0, 1) so f0(0) = a and f0(1) = b.

We conclude that f0 ∈ A and it minimises E.

6 Conclusions

The minimiser we have obtained in the above section is an element of the Sobolev
space, W 1,p with p > 1. Using the Sobolev embedding theorem, we can say that the
minimiser is continuous, but nothing more can be said about its regularity in general.
With some additional assumptions on W , however, it is possible to show that the
minimiser is smooth [1]. In this case, it would also be a solution to the equilibrium
equations (Euler-Lagrange equations). However, this problem is still open in the 3d
case.
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