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Consider a closed 2-manifold M. The normalised Ricci flow is the following PDE:

∂g

∂t
= (r − R)g. (1)

where g(t) is a 1-parameter family of smooth Riemannian metrics, R(x, t) is scalar curvature
corresponding to the metric g(t) and r is the average scalar curvature:

r =

∫
MR dx∫
M dx

.

It is straightforward to see that this flow preserves conformal class of the metric as it preserves
right angles: suppose u, v ∈ TpM such that g(u, v) = 0, then

∂

∂t
g(u, v) = (r − R)g(u, v) = 0.

We prove that the curvature, R of a closed manifold with r < 0 subject to the normalised
Ricci flow satisfies certain a priori bounds. First we compute the evolution equation for the
curvature under the normalised Ricci flow:

Lemma 1. Under the normalised Ricci flow on a surface, the scalar curvature R evolves
according to the PDE:

∂R

∂t
= ∆g(t)R + R(R− r), (2)

where ∆g is the Laplace-Beltrami operator with respect to the metric g(t).

Proof. Since the normalised Ricci flow preserves conformal class, we may write g(t) = eu(x,t)h
for a fixed metric, h. The curvatures of conformally related metrics are related by R =
e−u(−∆hu+ Rh), where ∆h is the Laplacian w.r.t h [1, 12].

Since
∂g

∂t
= (r − R)g, we get

∂u

∂t
= r −R. Differentiating the expression for R,

∂

∂t
R = −

(
∂u

∂t

)
e−u(−∆hu+ Rh)− e−u∆h

(
∂u

∂t

)
= ∆gR + R(R− r).

Equations of the type (2) are called Reaction-Diffusion equations. We first prove the max-
imum principle for such PDEs and use it obtain lower bounds on the curvature R. Upper
bounds, on the other hand are more elusive. The strategy in this case is to study certain
quantities related to special solutions to the normalised Ricci flow, known as Ricci solitons.
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1 Maximum Principles for Reaction-Diffusion systems

We state and prove the maximum principle for scalar heat-type equations with non-linear
reaction terms. Let M be a closed manifold and v :M× [0, T ) be a C2 function. We first
prove maximum principles for the following heat-type equation on a closed manifold:

∂v

∂t
= ∆g(t)v + 〈X,∇v〉 , (3)

where g(t) is a 1-parameter family of Riemannian metrics and X(t) a 1-parameter family
of smooth vector fields all defined on the interval t ∈ [0, T ). ∆g(t) is the Laplace-Beltrami
operator corresponding to the metric g(t).

Theorem 2. Let u :M× [0, T ) → R a C2 function and ∃α ∈ R such that u(x, 0) ≥ α for
all x ∈M. If u is a super-solution to the heat-type equation, i.e.

∂u

∂t
≥ ∆g(t)u+ 〈X,∇u〉 ,

for all (x, t) ∈M× [0, T ) such that u(x, t) < α, then u(x, t) ≥ α for all (x, t) ∈M× [0, T ).

Proof. Consider the C2 function H :M×[0, T )→ R defined by H(x, t) := [u(x, t)−α]+εt+ε
where ε > 0. Let (x0, t0) ∈M×[0, T ) be the point in spacetime whereH attains its maximum
among all points and all previous times i.e.

H(x0, t0) = min
M×[0,t0]

H.

This exists because M× [0, t0] is compact. At (x0, t0) we have

∂H

∂t
≤ 0; ∇H = 0; ∆gH ≥ 0. (∗)

Since u(x, 0) ≥ α, we see that H(x, 0) ≥ ε > 0.
Now we use the fact that u is a super-solution, whenever u < α:

∂u

∂t
≥ ∆gu+ 〈X,∇u〉

=⇒ ∂H

∂t
≥ ∆gH + 〈X,∇H〉+ ε. (∗∗)

Notice that
H > 0⇔ [u(x, t)− α] + εt+ ε,

and since this is true for any ε > 0 and t ∈ [0, T ), we have u(x, t) ≥ α. So we need only
show that H > 0 for all t ∈ [0, T ).

Suppose H ≤ 0 at some (x1, t1) ∈M× [0, T ). SinceM is compact and H > 0 at t = 0, there
must be some first time t0 ∈ (0, t1] such that at a point x0 ∈ M such that H(x0, t0) = 0.
Then since

u(x0, t0) = α− εt0 − ε < α,
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using (∗) and (∗∗) we have

0 ≥ ∂H

∂t
(x0, t0) ≥ ∆gH(x0, t0) + 〈X,∇H〉 (x0, t0) + ε ≥ ε > 0.

This is a contradiction, so H > 0.

Next we prove the maximum principle for heat-type equations with linear reaction terms.
Let β :M× [0, T ) → R be a function such that for each τ ∈ [0, T ), there exists a constant
Cτ <∞ such that β(x, t) ≤ Cτ for all x ∈M and t ∈ [0, τ ]. We then consider the following
heat-type equation:

∂v

∂t
= ∆g(t)v + 〈X,∇v〉+ βv. (4)

Proposition 3. Let u :M× [0, T )→ R be a C2 super-solution to (4) on a closed manifold
i.e.

∂u

∂t
≥ ∆g(t)u+ 〈X,∇u〉+ βu.

If u(x, 0) ≥ 0 for all x ∈M, then u(x, t) ≥ 0 for all (x, t) ∈M× [0, T ).

Proof. Given τ ∈ (0, T ) define the auxiliary function

J(x, t) := e−Cτ tu(x, t).

Since u(x, 0) ≥ 0, we also have J(x, 0) ≥ 0 for all x ∈M. Differentiating J :

∂J

∂t
= −Cτe−Cτ tu(x, t) + e−Cτ t

∂u

∂t
≥ −CτJ(x, t) + e−Cτ t(∆gu+ 〈X,∇u〉+ βu)

= ∆gJ + 〈X,∇J〉+ (β − Cτ )︸ ︷︷ ︸
≤0

J

Thus for all (x, t) ∈M× [0, τ ], where J ≤ 0 we have

∂J

∂t
≥ ∆gJ + 〈X,∇J〉 .

Applying Theorem 2 we conclude that J ≥ 0 for all (x, t) ∈ M× [0, τ), consequently u ≥ 0
also. Since τ was arbitrary, the result follows.

Next we prove the maximum principle for Reaction-Diffusion equations with nonlinear reac-
tion terms. This theorem is often referred to as parabolic maximum principle.

∂v

∂t
= ∆g(t)v + 〈X,∇v〉+ F (v) (5)

where g(t) is a smooth 1-parameter family of metrics, for t ∈ [0, T ). F : R→ R is a locally
Lipschitz function.
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Definition 4. A smooth function u :M× [0, T )→ R is a supersolution of (5) if

∂u

∂t
≥ ∆g(t)u+ F (u)

and a subsolution if
∂u

∂t
≤ ∆g(t)u+ F (u).

Theorem 5 (Parabolic Maximum principle). Let u :M× [0, T )→ R be a C2 supersolution
to (5) on a closed manifold. Suppose ∃C1 ∈ R such that u(x, 0) ≥ C1 for all x ∈ M and let
ϕ1 be a solution to the ODE initial value problem

dϕ1

dt
= F (ϕ1) ϕ1(0) = C1,

then
u(x, t) ≥ ϕ1(t)

for all x ∈M and t ∈ [0, T ) such that ϕ1(t) exists.

Similarly suppose u : M× [0, T ) → R is a C2 subsolution to (5) and ∃C2 ∈ R such that
u(x, 0) ≤ C2 for all x ∈M and let ϕ2 be a solution to the ODE initial value problem

dϕ2

dt
= F (ϕ2) ϕ2(0) = C2,

then
u(x, t) ≤ ϕ2(t)

for all x ∈M and t ∈ [0, T ) such that ϕ2(t) exists.

Proof. First we prove the lower bound. The upper bound follows similarly.

∂

∂t
(u− ϕ1) =

∂u

∂t
− ∂ϕ1

∂t
≥ ∆gu+ 〈X,∇u〉+ F (u)− F (ϕ1)

= ∆g(u− ϕ1) + 〈X,∇(u− ϕ1)〉+ F (u)− F (ϕ1).

From the assumption on initial date u − ϕ1 ≥ 0 at t = 0. Pick τ ∈ (0, T ). Since M is
compact, there exists Cτ <∞ such that for all (x, t) ∈M× [0, τ ]

|u(x, t)| ≤ Cτ |ϕ1(t)| ≤ Cτ .

Since F is locally Lipschitz, there exists  Lτ <∞ such that

|F (v)− F (w)| ≤ Lτ |v − w|

for all v, w ∈ [−Cτ , Cτ ]. Hence

−Lτ |v − w| ≤ F (v)− F (w) ≤ Lτ |v − w| ,
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−Lτ sgn(v − w) · (v − w) ≤ F (v)− F (w) ≤ Lτ sgn(v − w).

Using the above inequality:

∂u− ϕ1

∂t
≥ ∆g(u− ϕ1) + 〈X,∇(u− ϕ1)〉 − Lτ sgn(u− ϕ1) · (u− ϕ1)

Let β := −Lτ sgn(u− ϕ1) and use Theorem 3 we may conclude that

u− ϕ1 ≥ 0

on M× [0, τ ]. The theorem follows since τ ∈ (0, T ) was arbitrary.

2 Lower Bounds for Curvature

We return to the evolution equation for scalar curvature under the normalised Ricci flow,

∂R

∂t
= ∆g(t)R + R(R− r).

It is clear that this is an equation of the type (5) and thus we may apply the maximum
principle to get the following estimate

Lemma 6. Let g(t) be a solution with bounded curvature of the normalised Ricci flow on a
closed surface with r < 0. Then

R− r ≥ r

1−
(

1− r
Rmin(0)

)
ert
− r ≥ (Rmin − r)ert,

where Rmin(t) := infx∈MR(x, t).

Proof. We apply the maximum principle to the solution of (2). Formally ignoring the Lapla-
cian term gives us an ODE of the form ds/ dt = s(s − r). Solving this with the initial
condition s(0) = s0 with r < 0 yields:

s(t) =
r

1− (1− r/s0) ert
. (6)

Next we would like a uniform lower bound on R(x, 0) as the initial condition for the ODE.
We pick Rmin(0), which exists because the manifold is compact. Applying the maximum
principle with s0 = Rmin(0) we get

R ≥ r

1−
(

1− r
Rmin(0)

)
ert
.

The inequality in the lemma is straightforward to show now.
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Figure 1: s(t), from equation (6) plotted for negative and positive values of initial condition.

We could also apply the maximum principle to obtain a similar upper bound for R, however
these are not particularly useful. This is because s(t) in (6) blows up to infinity at

tb = −1

r
log

(
1− r

s0

)
.

When s0 < 0 (remembering that r < 0 in our case), tb < 0 and this does not affect the flow
for positive time. However, when s0 > 0, 0 < tb < ∞ i.e. the solution blows up at finite
time. To obtain lower bounds we use s0 = Rmin(0), which is guaranteed to be negative since
the average r is negative. On the other hand, to obtain upper bounds we have no guarantee
that there exists a negative upper-bound on R(x, 0) as there could be regions of the manifold
with positive curvature, despite the average being negative. Thus there is the possibility that
upper-bounds we obtain for curvature could blow up in finite time, rendering them useless.

3 Upper bounds for curvature

In the earlier section we saw that applying the maximum principle directly to the Reaction-
Diffusion equation for curvature does not, in general, give useful upper-bounds, so we are
forced to look for other geometric quantities that will help us in our cause:

Definition 7 (Curvature Potential). A function f(x, t) satisfying the following Poisson
equation,

∆gf = R− r (7)

is called a potential of the curvature function.

We notice that the above equation has a solution as
∫
MR−r dµ = 0, which is a necessary and

sufficient condition for the Poisson equation to be soluble on a closed Riemannian manifold.
The solution is unique up to addition with a function constant in space c(t). It should be
mentioned that the motivation for defining the potential as above comes from the study of
a special class of solutions to the Ricci flow called Ricci solitons. Studying how f evolves
under the Ricci normalised Ricci flow leads us to certain quantities that help us estimate the
curvature from above.
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Lemma 8. Let g(t) be a solution to the normalised Ricci flow on a closed surface M. Then
there is a corresponding potential function f(x, t) that satisfies the evolution equation

∂f

∂t
= ∆gf + rf. (8)

Proof. Let f(x, t) = f0(x, t) + c(t), where f0(x, t) is a potential of curvature and c(t) is a
function independent of space. We start by differentiating the equation ∆gf = R − r with

respect to time and use the formula
∂

∂t
∆g(t) = (R− r)∆g(t). The left hand side yields,

∂

∂t
(∆gf) =

(
∂

∂t
∆g

)
f + ∆g

∂f

∂t

= (R− r)∆gf + ∆g

(
∂f0
∂t

+
∂c

∂t

)
= (R− r)2 + ∆g(t)

(
∂f0
∂t

)
.

The right hand side,

∂R

∂t
= ∆gR + R(R− r) Using (2)

= ∆2
gf0 + R(R− r),

where ∆2
g = ∆g ◦∆g is the biharmonic operator on the manifold. Equating the two sides we

get

∆g(t)

(
∂f0
∂t

)
= ∆2

gf0 + r(R− r)

= ∆g(∆gf0 + rf0)

Thus,
∂f0
∂t

= ∆gf0 + rf0 + γ(t),

where γ(t) is a a constant function of space. If we choose c(t) = −ert
∫ t
0

e−rsγ(s) ds, we are
done.

Finally we define the following quantity that will give us the required upper bound.

H := R− r + |∇f |2 (9)

It is not straightforward to assign any geometric meaning to H apart from being a manu-
factured function that is a means to an end. We look at the evolution equation for H under
the normalised Ricci flow:

Proposition 9. Under the normalised Ricci flow the quantity H defined in (9) evolves
according to the following PDE:

∂H

∂t
= ∆gH − 2 |M |2 + rH, (10)
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where M is the traceless part of the Hessian of f :

M := ∇2f −
(

1

2
∆gf

)
g.

Proof. Notice first that we can manipulate (2) and use (7) to get

∂

∂t
(R− r) = ∆gR + R(R− r)

= ∆g(R− r) + (R− r)2 + r(R− r)
= ∆g(R− r) + (∆gf)2 + r(R− r). (†)

Now let us compute the evolution equation for |∇f |2. We will use coordinates in this com-
putation. We denote the components of the inverse of the metric by gij. It is straightforward
to show that under the normalised Ricci flow, the inverse metric evolves according to

∂gij

∂t
= (R− r)gij (11)

∂

∂t
|∇f |2 =

∂

∂t
(gij∇if∇jf)

=

(
∂gij

∂t

)
∇if∇jf + 2gij

(
∂

∂t
∇if

)
∇jf

= (R− r)gij∇if∇jf + 2g(∇∆gf + r∇f,∇f) Using (11) and (8)

= (R− r) |∇f |2 + g(∆g∇f,∇f) + 2r |∇f |2

= R |∇f |2 + r |∇f |2 + g(∆g∇f,∇f)

In the above equation we denote the inner product on the cotangent space, T ∗pM as g(·, ·).
We now need a formula from Riemannian geometry to commute the Laplacian and the
gradient:

∇∆g = ∆g∇−
1

2
R∇ (12)

Using this formula in the our earlier computation we get

∂

∂t
|∇f |2 = r |∇f |2 + 2g(∆g∇f,∇f)

= r |∇f |2 + ∆g |∇f |2 − 2
∣∣∇2f

∣∣2 . (††)

Combining (†) with (††) yields the result because

|M |2 =
∣∣∇2f

∣∣2 − 1

2
(∆gf)2.
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It is clear from the definition (9) that H > R − r. Since H is a solution to (10), it is a

sub-solution to the PDE
∂v

∂t
= ∆gv + rv since

∂H

∂t
= ∆gH − 2 |M |2 + rH ≤ ∆gH + rH (13)

To apply the maximum principle to (13) we formally neglect the Laplacian and solve the
resulting ODE dv/ dt = rv to get the following estimate:

R− r ≤ H ≤ Cert.

Combining the above estimate with Lemma 6 we may conclude

Proposition 10. For a solution of the normalised Ricci flow on a closed surface M of
negative average scalar curvature (r < 0), ∃C > 0 such that

r − Cert ≤ R ≤ r + Cert.
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