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The Uniformisation theorem

Theorem (Uniformisation)
LetM be a closed Riemann surface. ThenM is conformally
equivalent to one of these constant curvature surfaces:

(i) the Unit disk (D) (curvature -1),
(ii) the Complex plane (C) (curvature 0),
(iii) or the Riemann sphere (C ∪ {∞}) (curvature +1).

In this presentation: We will prove a (i) of this theorem for
closed 2-manifolds using the Ricci flow.
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Ricci curvature

I exp : TxM→M gives us a way to map a ball in TxM∼= Rn

intoM.
I The volume of this image can be Taylor expanded in

normal coordinates as follows:

dµM(x) = (1− 1
6

Rij|xxixj + ...)dµEuclidean

I The Ricci curvature at a point x is a (2, 0)-tensor with
components Rij.
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‘Basic’ facts

I Rc is a differential operator on the space of metrics.
I The scalar curvature is the trace of the Ricci curvature,

R = trg(Rc) = gijRij

I 2d manifolds satisfy the Einstein equation:

Rc =
1
2

Rg

I The average scalar curvature is defined as

r =

∫
M Rdµ∫
M dµ

.
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‘Basic’ facts

(a) r > 0 (b) r = 0

(c) r < 0
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Ricci flow

The Ricci flow is the PDE:

∂g
∂t

= −2Rc g(0) = g0

The volume ofM may change under the Ricci flow so we
define the normalised Ricci flow:

∂g
∂t

= −2Rc +
2
n

rg g(0) = g0.

Using the Einstein equation, for surfaces:

∂g
∂t

= (r − R)g g(0) = g0.

r is a constant by virtue of the Gauss-Bonnet theorem.
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Ricci flow

Our main result is the following:

Theorem
Let (M, g0) is a closed Riemannian surface with average scalar
curvature, r < 0. Then there exists a unique solution g(t) to the
normalised Ricci flow

∂g
∂t

= (r − R)g g(0) = g0.

The solution exists for all time and as t→∞, g(t) converges
exponentially in every Ck-norm to a smooth constant-curvature
metric g∞.
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Short-time existence

I The Ricci flow is a non-linear PDE in the space of metrics.
I In fact we can show that in a harmonic coordinate system,

the Ricci curvature

Rij = −1
2

∆gij + Qij(g−1, ∂g),

where ∆ is the Laplacian , and Q is a quadratic term.
I Thus it looks like non-linear heat equation in harmonic

coordinates.
I However, as the metric evolves, the coordinate system will

not remain Harmonic.
I DeTurck’s trick: Introduce time dependent infinitesimal

coordinate changes that keep the equation parabolic.
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DeTurck’s trick: some details

I For an appropriate choice of vector field X(t), the following
PDE is strongly parabolic:

∂ḡij(t)
∂t

= −2R̄ij(t) + (LX(t)ḡ(t))ij ḡ(0) = g0, (1)

where R̄ij(t) are the components of Rc[ḡ(t)].
I Then, we construct a 1-parameter family of

diffeomorphisms, {ϕt :M→M} by solving the ODE
pointwise:

∂ϕt(p)

∂t
= −X(ϕt(p), t) ϕ0 = idM.

I Then the family of metrics g(t) := ϕ∗t ḡ(t) solves the Ricci
flow.
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Short-time existence

With the appropriate choice: Xk = gpq(Γk
pq − Γ̃k

pq), where Γ̃ is the
Levi-Civita connection of a fixed background metric, we get the
following existence result:

Theorem (Hamilton-DeTurck)
If (M, g0) is a closed Riemannian manifold, there exists a
unique solution g(t) to the Ricci flow defined on some time
interval [0, ε) (ε > 0) such that g(0) = g0.
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Lower bounds for curvature

I From this point on, we consider dimension=2.

I recall that the Ricci flow is given by
∂g
∂t

= (r − R)g.

I Ricci flow preserves conformal class: Let u, v ∈ TpM such
that g(u, v) = 0 then,

∂

∂t
g(u, v) = (r − R)g(u, v) = 0

Lemma
Under the normalised Ricci flow,

∂g
∂t

= (r − R)g the scalar
curvature evolves as

∂R
∂t

= ∆R + R(R− r).
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Lower bounds for curvature

Proof:
Since the normalised Ricci flow preserves conformal class, we
may write g(t) = eu(x,t)h for a fixed metric, h. The curvatures of
conformally related metrics are related by R = e−u(−∆hu + Rh),
where ∆h is the Laplacian w.r.t h.

Since
∂g
∂t

= (r − R)g, we get
∂u
∂t

= r − R. Differentiating the
expression for R,

∂

∂t
R = −

(
∂u
∂t

)
e−u(−∆hu + Rh)− e−u∆h

(
∂u
∂t

)
= ∆R + R(R− r)
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Maximum principles

We state the maximum principle for semi-linear
Reaction-Diffusion equations,

∂v
∂t

= ∆g(t)v + 〈X(t),∇v〉+ F(v) (2)

where g(t) and X(t) are smooth 1-parameter families of metrics
and vector fields for t ∈ [0,T). F : R→ R is a Lipschitz function.

Definition
A smooth function u :M× [0,T)→ R is a super(sub)solution of
(2) if

∂u
∂t
≥ (≤)∆g(t)u + 〈X(t),∇u〉+ F(u)
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Maximum principles

Theorem
Let u :M× [0,T)→ R be a C2 super-solution to (2) on a closed
manifold. Suppose ∃C1 ∈ R such that u(x, 0) ≥ C1 for all x ∈M
and let ϕ1 be a solution to the ODE initial value problem

dϕ1

dt
= F(ϕ1) ϕ1(0) = C1,

then
u(x, t) ≥ ϕ1(t)

for all x ∈M and t ∈ [0,T) such that ϕ1(t) exists.

The same applies to subsolutions with the inequalities reversed.
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Lower bounds for curvature

Let us apply the maximum principle to the equation

∂R
∂t

= ∆R + R(R− r).

Formally ignoring the Laplacian and solving the ODE
ds/dt = s(s− r) with the initial condition s(0) = s0, we get

s(t) =
r

1− (1− r/s0) ert
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Lower bounds for curvature
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(b) ODE solution for s0 > 0.

I Hence we could pick s0 = Rmin(t) := infx∈M R(x, t) to get a
good lower bound when r < 0:

R− r ≥ r
1− (1− r/Rmin(0)) ert − r ≥ Cert.

I However the same would not work for upper-bounds since
the ODE solution blows up in finite time for s0 > 0.
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Upper bounds

I Directly applying Maximum principle— BAD IDEA.
I Look for other quantities that can help us.
I ‘Ricci Solitons’: Source of inspiration.
I Self-similar solution or Ricci Soliton: ∃ϕt conformal

diffeomorphisms s.t.

g(t) = ϕ(t)∗g(0),

I Differentiating w.r.t. time this we get,

∂gij

∂t
= (LXg)ij = ∇iXj +∇jXi

I But g is also a solution to the normalised Ricci flow, so

(r − R)gij = ∇iXj +∇jXi
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Curvature Potentials

I If there’s a function f (x, t) such that X = −∇f , then

(R− r)gij = 2∇i∇jf .

I Tracing the above equation yields the Poisson equation for
f :

∆f = R− r.

I Key idea: The above equation is soluble even on
non-solitons, because∫

M
(R− r)dA = 0.

I We call such a function the potential of curvature.
I On closed surfaces, the potential is unique up to a

constant c(t).
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Curvature Potentials

Lemma
Corresponding to a solution of the normalised Ricci flow, there
is a potential evolving according to

∂f
∂t

= ∆f + rf . (3)

We define the quantity,

H := R− r + |∇f |2 ,

which will be useful to get upper-bounds for curvature.
Clearly,

H ≥ R− r
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Upper-bounds for Curvature

Lemma
For a solution of the normalised Ricci flow, H evolves according
to the PDE

∂H
∂t

= ∆H − 2 |M|2 + rH, (4)

where M is the traceless part of the Hessian of f ,

M = ∇2f −
(

1
2

∆f
)

g

Clearly H is a sub-solution to the PDE
∂v
∂t

= ∆v + rv since

∂H
∂t

= ∆H − 2 |M|2 + rH ≤ ∆H + rH.
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A priori Curvature Estimates

Applying the maximum principle to (4), we get

R− r ≤ H ≤ Cert.

Combining this with the lower bound we got earlier,

Proposition
For a solution of the normalised Ricci flow on a closed surface
M of negative average scalar curvature (r < 0), ∃C > 0 such
that

r − Cert ≤ R ≤ r + Cert.
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Long-time existence

I Short-time existence.
I Bounds on curvature.
I Bernstein-Bando-Shi estimates =⇒ bounds on derivatives

of curvature.
I As a consequence we can extend the lifetime of the

solution to∞ or ‘Long-time’ existence.
I In order to prove convergence of the solution to a constant

curvature metric: suffice to show that all the derivatives of
curvature die exponentially.
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Convergence

Lemma
For any solution g(t) of the normalised Ricci flow, the quantity
|∇R|2 evolves:

∂ |∇R|2

∂t
= ∆ |∇R|2 − 2

∣∣∇2R
∣∣2 + (4R− 3r) |∇R|2

Proof:
We need the Ricci identity: ∇∆ = ∆∇− 1

2 R∇.

Recall the evolution equation for R,
∂R
∂t

= ∆R + R(R− r).
Using the above we get

∂(∇R)

∂t
= ∇(∆R + R(R− r)) = ∆∇R +

3
2

R∇R− r∇R.
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Convergence

Now we compute

∂ |∇R|2

∂t
=

∂

∂t
g(∇R,∇R)

=
∂g
∂t

(∇R,∇R) + 2g
(
∂∇R
∂t

,∇R
)

= (R− r) |∇R|2 + 2g(∆∇R +
3
2

R∇R− r∇R,∇R)

Now, using the identity ∆ |∇R|2 = 2g (∆∇R,∇R) + 2
∣∣∇2R

∣∣2
(which is not very hard to show), we get the required
equation.
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Convergence

Using our estimate for curvature |R− r| ≤ Cert in the above
evolution equation:

∂ |∇R|2

∂t
= ∆ |∇R|2 − 2

∣∣∇2R
∣∣2 + (4R− 3r) |∇R|2

≤ ∆ |∇R|2 + (r + 4Cert) |∇R|2

≤ ∆ |∇R|2 +
r
2
|∇R|2 for large enough t > 0.

We may quite easily apply the maximum principle to the above
sub-solution to get

|∇R|2 ≤ C1ert/2

This argument can be bootstrapped to get estimates on higher
derivatives.
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Note on r = 0 and r > 0 case

I The case r = 0 takes a little more work, but similar
techniques as before work.

I The case of r > 0 is much trickier and requires different
techniques.

I Such as estimates on ‘surface entropy’.
I Chow and Knopf also use the Kazdan-Warner identity

(which is proved using the Uniformisation theorem) in the
proof. Consequently, this does not constitute an
independent proof of the Uniformisation theorem.

I However, Cheng, Lu and Tian provided a proof that is
independent of the Uniformisation theorem.
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