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1 Introduction

The positive mass theorem is a foundational result in General relativity, which broadly asserts
that an ‘isolated system’, a region of positive curvature, always has a ‘non-zero gravitational
effect’ far away.
It is easy to motivate the theorem using a Newtonian gravitational analogy [1]: consider an
integrable matter distribution function, ρ(x) in R3. Asymptotically, the Newtonian potential,
ϕ(x) = −m

r
+ O(r−2), where m =

∫
ρ is the ‘total mass’ of the system. Clearly, if ρ ≥ 0, then

m ≥ 0, i.e. far enough away, an observer would experience an attractive force. In general
relativity, by virtue of the Einstein constraint equations, the scalar curvature, R takes the role
of ρ. The analogous question, in this case is: “if R ≥ 0, is the ADM-mass non-negative?”

In 1979, Schoen and Yau proved the positive mass theorem for asymptotically Schwarzschild
manifolds [2] and in 1981, they proved the theorem for general asymptotically flat mani-
folds [3]. Independently, in 1981, Witten proved the theorem for manifolds that admit a spin
structure [4].
In this document, we will present the proof in the case of asymptotically Schwarzschild met-
rics.

2 Asymptotically flat manifolds

Definition 1. On R3 \ {0} (or R× S2), the spatial Schwarzschild metric is given by

gij =
(

1 +
m

2r

)4
δij,

where δij is the Kronecker delta function.

Remark. This metric is related to the spatial part of the standard form of the Schwarzschild
metric, ds2 =

(
1− 2m

r̃

)−1
dr̃ + r̃2 dΩ2, by the coordinate change r̃ = r

(
1 + m

2r

)2.
We model the effect of an isolated system by requiring that asymptotically, the manifold looks
like Schwarzschild space, i.e. as though the system behaves like a spherically symmetric ob-
ject with some effective mass.
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Figure 1: An example of a 2 dimensional asymptotically flat manifold with three ends. Ends
are marked in blue whereas the compact set/bulk is marked in orange.

An oriented 3-manifold (without boundary), N is said to be asymptotically flat (or more specif-
ically, asymptotically Schwarzschild) if there is a compact set C ⊂ N such that N \ C =

⋃k
i=1Ni,

where each end, Ni is diffeomorphic to R3 \ B, where B is a Euclidean ball. Furthermore, in
these coordinates, the metric on the end Nk has the form,

gij =
(

1 +
mk

2r

)4
δij + pij,

where for positive constants k1, k2, k3,

|pij| ≤
k1

1 + r2
, |∂pij| ≤

k2
1 + r3

,
∣∣∂2pij∣∣ ≤ k1

1 + r4
.

mk is referred to as the ’total mass’ of the end Nk. Here r = |x|, in the flat coordinates under
the Euclidean norm. From this it is clear that asymptotically g ' δ + (2mk/r)δ + p = O(1),
g−1 = O(1) and ∂g = O(1/r2), so the connection coefficients, Γ ' g−1(∂g+ ∂g− ∂g) = O(1/r2)
and the curvature tensors R ' ∂Γ = O(1/r3).

We can now state the main theorem,

Theorem 1 (Positive mass). Let ds2 be an asymptotically flat metric on an oriented 3-manifold N .
If the scalar curvature, R ≥ 0 on N, then mk ≥ 0 on each end Nk.

3 Proof of the theorem

The proof consists of three main steps and relies on many ‘well known’ results in geometry.
We always work in a fixed end, Nk with asymptotically flat coordinates {x1, x2, x3} on R3 \
Bσ0(0) where Bσ0(0) = {|x| < σ0} (Euclidean ball). Drop the subscript k on the mass mk. The
overarching idea of the proof is to take m < 0 and arrive at a contradiction.
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Step 1

We show that if m < 0 then there is an asymptotically flat metric ds̃2 that is conformal to ds2

with scalar curvature R̃ ≥ 0 onN and R̃ > 0 outside a compact set ofNk, but still having mass
m̃ < 0.

Proof. The Laplacian on R3 \Bσ0 is given by

∆ϕ =
1√

det gij
∂i(
√

det gijg
ij∂jϕ),

where Einstein summation is adopted and gij denotes the inverse of gij . To estimate det gij ,
we note that

det gij = det


(
1 + m

2r

)4
+O(1/r2) O(1/r2) O(1/r2)

O(1/r2)
(
1 + m

2r

)4
+O(1/r2) O(1/r2)

O(1/r2) O(1/r2)
(
1 + m

2r

)4
+O(1/r2)


=
(

1 +
m

2r

)12
+

3

r2

(
1 +

m

2r

)8
= (1 +

m

2r
)12 +O(1/r2) = 1 +

6m

r
+O(1/r2),

therefore,
√

det gij = 1 + 3m
r

+O(1/r2). We also have,

gij =
(

1− m

2r

)4
δij +O(1/r2) =

(
1− 2m

r

)
δij +O(1/r2)

plugging all these estimates into the Laplacian of 1/r,

∆(1/r) =

(
1 +

3m

r
+O(1/r2)

)−1
∂i

[(
1 +

3m

r
+O(1/r2)

)((
1− 2m

r

)
δij +O(1/r2)

)
∂j(1/r)

]
=

(
1 +

3m

r
+O(1/r2)

)−1
∂i

[(
1 +

3m

r
+O(1/r2)

)((
1− 2m

r

)
δij +O(1/r2)

)
−xj

r3

]
=

(
1 +

3m

r
+O(1/r2)

)−1
∂i

[(
1 +

3m

r
+O(1/r2)

)((
1− 2m

r

)
−xi

r3
+O(1/r5)

)]
=

(
1 +

3m

r
+O(1/r2)

)−1
∂i

[
−x

i

r3
− Mxi

4
+O(1/r5)

]
=

(
1 +

3m

r
+O(1/r2)

)−1 [m
r4

+O(1/r6)
]

=
m

r4
+O(1/r5),

where we used the fact that
∑

i ∂i(x
i/r3) = 0 and

∑
i ∂i(x

i/r4) = 1/r4.

Now, since m < 0, we can for large enough σ > σ0 say that

∆(1/r) < 0 for r ≥ σ.
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Figure 2: Conformal factor ϕ: Constant insideBσ0 and other ends, decays like
(
1− m

4r

)
asymp-

totically. Note that this is only a representative diagram, since the function is actually smooth.

Define t0 = − m
8σ0

and ζ(t) smooth,

ζ(t) =

{
t t < t0

3t0/2 t > 2t0

and ζ ′(t) ≥ 0, ζ ′′(t) ≤ 0 for t ∈ (0,∞). Now define the conformal factor ϕ : N → R by

ϕ(x) =

{
1 + 3t0

2
x ∈ N \Nk

1 + ζ
(
−m

4r

)
x ∈ Nk

From a direct computation and the fact that ∆(1/r) < 0, we can show that ∆ϕ ≤ 0 on N and
∆ϕ < 0 for r > 2σ. Now define the metric ds̃2 = ϕ4 ds2. From the curvature formula for
conformal metrics,

R̃ = ϕ−5[−8∆ϕ+Rϕ],

we have R̃ ≥ 0 on N and R̃ > 0 on r > 2σ (i.e. outside a compact set).

Since ϕ is constant on every other end Ni i 6= k, ds̃2 is a constant multiple of ds2 there. On
Nk, for r > σ0,

g̃ij =
(

1− m

4r

)4 (
1 +

m

2r

)4
δij +O(1/r2)

=
(

1 +
m

4r

)4
δij +O(1/r2).

This is because, (
1− m

4r

)4 (
1 +

m

2r

)4
= 1 +

m

r
− m2

8r2
+O(1/r3)
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(
1 +

m

4r

)4
= 1 +

m

r
+

3m2

8r2
+O(1/r3)

so
(
1− m

4r

)4 (
1 + m

2r

)4
=
(
1 + m

4r

)4
+O(1/r2).

Notice that the metric ds̃2 corresponds to an asymptotically flat metric with mass m̃ = m/2 <
0.

We replace ds2 with the metric ds̃2 computed above, but will still refer to it as ds2 for conve-
nience.

Step 2

For the rest of the proof, we ‘extend’ the asymptotic coordinates on R3 \Bσ0(0) into the region
corresponding to Bσ0(0), so that {x1, x2, x3} covers an entire 3-space.

We show that there exists a complete area minimising (with repsect to ds2) surface S, properly
embedded in N so that (i) S ∩ (N ⊂ Nk) is compact and (ii) S ∩Nk lies between two Euclidean
planes in 3-space.
In other words, the minimal surface is contained inside a ‘horizontal slab’ in Nk and does not
extend infinitely into any other end. The idea is to construct this surface as the appropriate
limit of some sequence of compact minimal surfaces.

Proof. Let σ > 2σ0 and define Cσ to be Euclidean circle of radius σ lying in the x1x2-plane.
Solve the Plateau problem to get an area-minimising surface Sσ, with ∂Sσ = Cσ

1.

(i) First, we show that there is some compact set K0 ⊂ N such that for all σ > 2σ0, Sσ ∩ (N \
Nk) ⊂ K0. We will show that due to asymptotic flatness, Euclidean spheres are convex for
large enough radii.
Let Ni ' R3 \ Bτ0(0), i 6= k be another end of N with coordinates y1, y2, y3. Compute the
Hessian of |y|2:

∇2
ij |y|

2 =
∂

∂yi

(
∂

∂yj
|y|2
)
−∇ ∂

∂yi

(
∂

∂yj

)
|y|2 (∗)

=
∂2|y|2

∂yi∂yj
− Γkij∂k |y|

2

= δij − 2Γkijy
k

= δij +O(1/ |y|),

where we used the estimate for the connection coefficients from earlier. So there is some
τ1 > τ0, such that |y| ≥ τ1, ∇2 |y|2 > 0 i.e. |y|2 is convex.

Suppose the sequence {Sσ ∩ Ni} were not uniformly contained in some compact set K0 ⊂ N
i.e. the sequence ‘runs off’ to infinity in the end Ni, i 6= k. Then, there is some σ1 such that
the surface Sσ1 first touches the surface ∂Bτ2 , τ2 > τ1. This intersection is in the interior of Sσ1
since the boundary, Cσ1 lies in Nk and ∂Bτ2 is convex from the previous argument. However,

1reference Colding Minicozzi
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(a) (b)

Figure 3: (a) In our end, Nk, S is contained in a slab (marked in red); (b) The parts of S, lying
in other ends , Ni i 6= k are compact.

this contradicts the convex hull property [5], which states that the first point of intersection of a
convex surface approaching a minimal surface has to be on the boundary of the latter.
Thus, repeating this argument for every other end, Sσ∩(N \Nk) is contained in some compact
set K0.
(ii) Now we focus on Sσ ∩Nk, in particular, to show that ∃h > σ0 such that for all σ > 2σ0

Nk ∩ Sσ ⊂ Eh,

where the slab (or sandwich depending on your taste) Eh := {x ∈ R3 : |x3| ≤ h}. The idea is
to apply the maximum principle to the coordinate function x3 restricted to Sσ ∩Nk.

Compute ∇2x3 using the same formula as (∗),

∇2
ijx

3 = 0− Γ3
ij

∂x3

∂x3
= −Γ3

ij,

since every other term is zero. Also notice that,

gij =
(

1− m

2r

)4
δij +O(1/r2) =

(
1− 2m

r

)
δij +O(1/r2),

∂gij
∂xl

= −2mxl

r3
δij +O(1/r3).

Explicitly calculating Γ3
ij ,

Γ3
ij =

1

2
g3m

(
∂gim
∂xj

+
∂gjm
∂xi

− ∂gij
∂xm

)
=

1

2

[(
1− 2m

r

)
δ3m +O(1/r2)

] [
−2m

r3
(xjδim + xiδjm − xmδij) +O(1/r3)

]
= −m

r3
(xjδi3 + xiδj3 − x3δij) +O(1/r3).

So we have∇2
ijx

3 = m
r3

(xjδi3 + xiδj3 − x3δij) +O(1/r3).
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Now consider the function x3 on Sσ ∩Nk. Since this is a compact set, x3 attains a maximum,

h := max
Sσ∩Nk

{x3}.

We want to show that h is uniformly bounded (independent of σ). If h ≤ σ0, that uniform
bound could simply be σ0, so we look at the case h > σ0.

Suppose the maximum is attained at x0 ∈ Sσ∩Nk. Since h > σ0, x0 is away from the boundary
curve Cσ (which lies on the x1x2-plane) and the other boundary of Sσ∩Nk, which lies on ∂Bσ0 .
In other words, x0 is a local maximum, and so x3 has to have ‘zero slope’ there (and parallel

to the x1x2-plane). So, the tangent space Tx0Sσ is spanned by
∂

∂x1

∣∣∣∣
x0

,
∂

∂x2

∣∣∣∣
x0

. Locally extend

these to vector fields defined on a neighbourhood in Sσ and denote them by v1, v2. Let qij be
the metric induced by ds2 on Sσ in the v1, v2 coordinates. Denote the induced connection on
Sσ by ∇̃:

∇vivj = (∇vivj)

⊥

+ (∇vivj)
⊥

= ∇̃vivj + 〈∇vivj, ν〉 ν
= ∇̃vivj + hijν,

where ν is the unit normal field of §σ and hij is its second fundamental form. Therefore,

∇̃ijx
3 = vi(vj(x

3))− (∇̃vivj)x
3

= vi(vj(x
3))− (∇vivj)x

3 + hijν(x3)

= ∇2
ijx

3 + hijν(x3)

Tracing the above with respect to qij , and using the fact that Sσ is a minimal surface, i.e.
trq(hij) = qijhij = 0 yields

qij∇̃2
ijx

3 = qij∇2
ijx

3 + qijhijν(x3) = qij∇2
ijx

3.

Since Tx0Sσ is just a flat slice of R3, qij = δij , i = 1, 2 and j = 1, 2. So,

qij∇̃2
ijx

3
∣∣∣
x0

= δij
m

r3
(xj0δi3 + xi0δj3 − hδij) +O(1/r3),

where the summation for i, j is from 1 to 2. This gives

qij∇̃2
ijx

3
∣∣∣
x0

= −2mh

r3
+O(1/r3).

Since m < 0, for sufficiently large h, we get qij∇̃2
ijx

3
∣∣∣
x0
> 0. However, since x0 is a maximum,

∇̃2
ijx

3
∣∣∣
x0

must be negative semi-definite and qij∇̃2
ijx

3
∣∣∣
x0
≤ 0 (since qij is a positive definite

symmetric matrix). This is a contradiction, so h cannot be arbitrarily large.
Replacing maximum with minimum in this argument yields a lower bound for x3.
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Figure 4: Constructing S as a sequence of solutions to Plateau’s problem for the circle Cσ.

Now, we extract a subsequence {σi} such that Sσi → S that is properly embedded and sat-
isfies the desired properties. This is an involved step that requires ideas from the regularity
theory for minimal surfaces [5, 2, 6]. The general idea is to represent the surfaces Sσ as graphs
of functions and use the results derived above to get bounds on the derivatives of these func-
tions. This, along with the regularity estimate can be used to extract the required subsequence
such that Sσi → S in C2 on compact subsets of N .

Step 3

The final step is to show that the minimal surface S cannot exist. This is done by using the
second variation inequality and a clever application of the Gauss-Bonnet theorem, to arrive
at a contradiction thus finishing the proof of the theorem.

Define,
S(σ) := [S ∩ (N \Nk)] ∪ [S ∩Bσ(0)].

{S(σ)} forms an exhaustion of S.

Claim 2. Let σ ≥ σ0. There exists a constant C2 independent of σ such that,

Area(S(σ)) ≤ C2σ
2

Proof. If S intersects ∂Bσ(0) transversally, the intersection is a union of C2 simple closed
curves2. These curves bound a domain Ω ⊂ ∂Bσ(0) that shares the same boundary as S(σ).
Using the area-minimising property of S,

Area(S(σ)) ≤ Area(Ω) ≤ Area(∂Bσ(0)).

Since for σ > σ0, the metric is uniformly, Euclidean this implies the required inequality for
transverse intersections. Since non-transverse intersections can be ‘deformed’ by arbitrarily

2figure

8



small amounts to become transverse, we can use an approximation argument to extend the
inequality to all intersections.

Lemma 3. For a > 2, ∫
S

dr

1 + ra
≤ C2σ

2
0 + C2a

∫ ∞
σ0

t1+a

(1 + ta)2
dt

Proof. ∫
S

dr

1 + ra
=

∫
S(σ0)

dr

1 + ra
+

∫ ∞
σ0

(
d

dt

∫
S(t)

dr

1 + ra

)
dt (FTC)

≤ Area(S(σ0)) +

∫ ∞
σ0

1

1 + ta

(
d

dt
Area(S(t))

)
dt (see Remark)

≤ C2σ
2
0 + a

∫ ∞
σ0

ta−1

(1 + ta)2
Area(S(t)) dt (Integrate by parts)

≤ C2σ
2
0 + C2a

∫ ∞
σ0

ta+1

(1 + ta)2
dt.

Remark. In the second line of the above proof, we use an inequality that can be obtained from
this calculuation:∫

S(t+h)

dr

1 + ra
−
∫
S(t)

dr

1 + ra
=

∫
S(t+h)\S(t)

dr

1 + ra
(since S(t) ⊆ S(t+h))

≤ sup
r∈S(t+h)\S(t)

{
1

1 + ra

}∫
S(t+h)\S(t)

1 dr

≤ 1

1 + ta
Area(S(t+h) \ S(t)).

Dividing by h > 0 and taking h→ 0, yields the inequality used in the second line of the proof.

Lemma 4. For σ2 > σ1 > σ0, ∫
S(σ2)

\S(σ1)

dr

r2
≤ 2C2 log(σ2/σ1).

Proof. ∫
S(σ2)

\S(σ1)

dr

r2
=

∫ σ2

σ1

d

dt

(∫
S(t)

dr

r2

)
dt

≤
∫ σ2

σ1

1

t2
d

dt
(Area(S(t))) dt (same as Remark)

=

∫ σ2

σ1

2

t3
Area(S(t)) dt (Integrate by parts)

≤
∫ σ2

σ1

2

t3
C2t

2 dt = 2 log(σ2/σ1).
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The Second Variation inequality

By studying the stability of the minimal surface S constructed in the previous step, we will
see that it has to have positive total curvature. Using the Gauss-Bonnet theorem cleverly, we
will show that this is not possible, and that will give us the required contradiction.

Let {e1, e2, e3} be an orthonormal frame field defined locally for N . We denote the sectional
curvature of the plane spanned by {ei, ej} as

Kij = sec{ei, ej}.

Sectional curvature is related to the Riemann curvature, Rm in the following way,

Kij = 〈Rm(ei, ej)ej, ej〉 ,

where the inner product is with respect to the metric, ds2 on N . Clearly, Kii = 0.
The (0,2)-Ricci curvature tensor Rc is related to Rm in the following way,

Rc(ei, ek) =
3∑
j=1

〈Rm(ei, ej)ej, ek〉 .

We can relate sectional curvature to Rc in the following way,

Rc(ei, ei) =
3∑
j=1

〈Rm(ei, ej)ej, ei〉 =
3∑
j=1

Kij.

Finally, we write the scalar curvature, R.

R =
3∑
i=1

Rc(ei, ei) =
3∑
i=1

3∑
j=1

Kij = 2(K12 +K23 +K31),

since Kii = 0 and Kij is symmetric.

Remark. In Schoen and Yau’s paper, they use the notation Rc(ei) to mean Rc(ei, ei). Also, they
do not include the factor of 2 in the formula relating R to the sectional curvatures. This is a
minor difference that doesn’t affect the rest of the proof.

Let ν be the unit normal vector field to S and consider the frame e1, e2, e3 = ν restricted to S (e1
and e2 are tangent to S). The second fundamental form of S, denoted by A has the following
matrix components in the basis {e1, e2},

hij = 〈∇eiν, ej〉

and |A|2 =
∑2

i,j=1 h
2
ij . Since S is minimal, tr(A) = h11 + h22 = 0.

The second variation inequality (or stability condition) for a minimal surface is given by3∫
S

f [∆f + (Rc(ν, ν) + |A|2)f ] ≤ 0,

3refer CM
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where f ∈ C2
c (S) (twice continuously differentiable functions with compact support on S).

Using approximations, we can take f to be Lipschitz with compact support.
Integrating the above by parts yields,∫

S

(Rc(ν, ν) + |A|2)f 2 ≤
∫
S

|∆f |2 (∗∗)

Gauss’s equation says that

〈Rm(e1, e2)e2, e1〉 =
〈

R̃m(e1, e2)e2, e1

〉
+ h212 − h11h22,

where R̃m is the Riemann curvature of S. Notice that the term of the left hand side is the
sectional curvature K12 and the first term on the right side is the sectional curvature of S or
the Gaussian curvature, K (since e1 and e2 are tangent). Therefore,

K = K12 + h11h22 − h212
= K12 − h211 − h212 (S is minimal, h11 = −h22)

= K12 −
1

2
|A|2 . (Using symmetry of A and minimality of S)

Hence 1
2
|A|2 = K12 −K. Substituting this in the second variation inequality,∫

S

(
Rc(ν, ν) +K12 −K +

1

2
|A|2

)
f 2 ≤

∫
S

|∇f |2 (1)

Since Kii = 0, we have

Rc(ν, ν) =
3∑
j=1

K3j = K13 +K23.

Using this formula in the above inequality yields,∫
S

(
1

2
R−K +

1

2
|A|2

)
f 2 ≤

∫
S

|∇f |2 (∗ ∗ ∗)

Now, we make clever choices of f to get some useful estimates. For σ > σ0, define the cut-off
function

ϕ =


1 on S(σ)

log σ
2

r

log σ
on S(σ2) \ S(σ)

0 on S \ S(σ2)

Let g ≤ 1 be Lipschitz on S and have the property that |g| = 1 outside a compact subset of S.
Define f = ϕg (it is Lipschitz since ϕ and g are).
Using this form of f in (∗∗) gives∫

S

(Rc(ν, ν) + |A|2)ϕ2g2 ≤
∫
S

|∇(ϕg)|2

=

∫
S

|g∇ϕ|2 + 2

∫
S

(g∇ϕ) · (ϕ∇g) +

∫
S

|ϕ∇g|2

≤ 2

∫
S

g2 |∇ϕ|2 + 2

∫
S

ϕ2 |∇g|2 (Cauchy’s inequality)
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∇ϕ = − 1
log σ

∇r
r

on S(σ2) \S(σ) and zero elsewhere. Also,∇r = x/r, and computing the norm in
ds2:

|∇r|2 =
1

r2
gijx

ixj

=
(

1 +
m

2r

)4
+

1

r2
hijx

ixj

≤ 1 +
2m

r
+

k1
1 + r2

,

which is bounded on r > σ0 so we have |∇r|2 < C3. Rearranging the earlier inequality,∫
S(σ)

|A|2 g2 ≤ 2C3

(log σ)2

∫
S(σ2)\S(σ)

1

r2
+ 2

∫
S

|∇g|2 +

∫
S

|Rc(ν, ν)| g2.

Using Lemma 4, with σ2 = σ2 and σ1 = σ, we get∫
S(σ)

|A|2 g2 ≤ 2C2C3

log σ
+ 2

∫
S

|∇g|2 +

∫
S

|Rc(ν, ν)| g2.

Since this is true for all σ > σ0, we can take σ →∞ (using monotone convergence)∫
S

|A|2 g2 ≤ 2

∫
S

|∇g|2 +

∫
S

|Rc(ν, ν)| g2.

Set g = 1 and since Rc(ν, ν) = O(1/r3), the second term converges (Lemma 3) so we have∫
S

|A|2 <∞.

We have,

|K| ≤ |K12|+
∣∣h11h22 − h212∣∣ ≤ |K12|+

1

2

∣∣h211 − 2h212 + h222
∣∣ ≤ |K12|+ |A|2 .

Since |K12| = O(1/r3) (bound on Riemann curvature) from Lemma 3 again,
∫
S
|K12| < ∞,

therefore we get the bound, ∫
S

|K| <∞. (†)

Now, in (∗ ∗ ∗) take f = ϕ∫
S(σ)

(
R−K +

1

2
|A|2

)
+

∫
S(σ2)\S(σ)

(
R−K +

1

2
|A|2

)
log(σ2/r)

log σ
≤
∫
S(σ2)\S(σ)

1

(log σ)2
|∇r|2

r2
.

Taking σ →∞, ∫
S

R−K +
1

2
|A|2 ≤ 0.

From assumption, R ≥ 0 and R > 0 outside a compact subset of S, therefore,∫
S

K > 0. (††)
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Figure 5: At large radii, S(σ) approaches a disk.

Arriving at a Contradiction

We state the Cohn-Vossen inequality, which is analogous to the Gauss-Bonnet theorem in the
case of non-compact surfaces.

Theorem 5 (Cohn-Vossen inequality). For a complete 2-surface, S with finite total curvature and
Euler Characteristic, χ(S), ∫

S

K ≤ 2πχ(S).

From (††), χ(S) > 0 therefore χ(S) ≥ 1 (since the Euler characteristic is an integer). For a
surface χ(S) = 1 − rank(H1) and since rank(H1) ≥ 0, we get χ(S) = 1 and H1(S) = 0. This
implies that S is homeomorphic to R2.4

Claim 6. ∫
S

K ≤ 0.

Schoen and Yau provide two proofs of this claim. The first proof is much shorter and more
succinct than the second, but it relies on certain esoteric results from other papers, whereas
the second proof mostly relies on the Gauss-Bonnet theorem, so we choose that route. Schoen
and Yau’s original presentation of this proof, however, is very tedious so we take the approach
in [5].

Sketch of Proof. The main idea is to apply the Gauss-Bonnet theorem to S ∩ Bσ(0). A key
observation is that using the fact that S is homeomorphic to R2, it can be shown that for large
r, S is a graph of some function u over the x1x2-plane. Using the estimates on u from the last
paragraph of Step 2, we can show that the boundary ∂(S ∩ Bσ(0)), has geodesic curvature
kg = σ−1 +O(1/σ) in S. Computing the integral around the boundary,∫

∂(S∩Bσ(0))
kg = (2πσ +O(1))(σ−1 +O(1/σ)) = 2π +O(1/σ).

4reference classification theorem/Uniformisation theorem/stackexchange
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Applying the Gauss-Bonnet theorem to S ∩Bσ(0),∫
S∩Bσ(0)

K = 2π −
∫
∂(S∩Bσ(0))

kg = O(1/σ).

Taking the limit σ →∞ yields the result.

4 Conclusions

A closely related result, known as positive mass rigidity, which addresses the case when the
ADM-mass is zero, is also proven in [2], but we will not present that here.

Schoen and Yau’s proof of the positive mass theorem is a fascinating application of the the-
ory of minimal surfaces. This powerful technique however does not easily generalise to di-
mensions greater than 8. More recently, however, there has been development in this direc-
tion [1, 7].
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