INTEGRATION BY PARTS

REVIEW

• **Product Rule:** Let u and v be differentiable functions. Then the derivative of the product is given by

$$\frac{\mathrm{d}}{\mathrm{d}x}(u \cdot v) = u \cdot \frac{\mathrm{d}v}{\mathrm{d}x} + \frac{\mathrm{d}u}{\mathrm{d}x} \cdot v$$

Main Concepts

• Integrating by parts can be used to compute integrals of the form $\int f(x)g'(x) dx$:

$$\int f(x) g'(x) dx = f(x) g(x) - \int g(x) f'(x) dx$$

It is also expressed as

$$\int u \, \mathrm{d}v = u \, v - \int v \, \mathrm{d}u$$

where u = f(x), du = f'(x) dx, v = g(x) and dv = g'(x) dx.

ACTIVITIES

ACTIVITY 5.4.2

Evaluate each of the following indefinite integrals. Check each antiderivative that you find by differentiating.

(a)
$$\int te^{-t} dt$$

 $u = t$ $dv = e^{-t} dt$
 $du = dt$ $v = -e^{-t}$
 $\int te^{-t} dt = -te^{-t} - \int (-e^{-t}) dt$
 $= -te^{-t} - e^{-t} + C$

(b)
$$\int 4x \sin(3x) dx$$

 $u = x$ $dv = \sin 3x dx$
 $du = dx$ $v = -\frac{1}{3}\cos 3x$
 $4 \int x \sin 3x = 4 \left[x \left(-\frac{1}{3}\cos 3x \right) - \int \left(-\frac{1}{3}\cos 3x \right) dx \right]$
 $= -\frac{4}{3}x\cos 3x + \frac{4}{9}\sin 3x + C$

(c)
$$\int z \sec^2(z) dz$$

 $u = Z$ $dv = \sec^2 Z dZ$
 $du = dZ$ $V = \tan Z$

$$\int z \sec^2 z dz = z \tan z - \int \tan z dz$$

$$= z \tan z - \int \frac{\sin z}{\cos z} dz \quad \text{let } u = \cos z$$

$$= \int \frac{\sin z}{\cos z} dz = \int \frac{du}{u} = \ln|u| = \ln|\cos z|$$

(d)
$$\int x \ln(x) dx$$

 $u = \ln x$ $dv = x dx$
 $du = \frac{1}{x} dx$ $V = \frac{x^2}{2}$
 $\int x \ln x dx = \frac{x^2 \ln x - \int \frac{x^2}{2} \frac{1}{x} dx}$
 $= \frac{x^2 \ln x - \frac{1}{2} \int x dx}{2 \ln x - \frac{x^2}{4} + C}$ 2

ACTIVITY 5.4.2

Evaluate each of the following indefinite integrals, using the provided hints.

(a) Evaluate $\int \arctan(x) dx$ by using Integration by Parts with the substitution $u = \arctan(x)$ and dv = 1 dx.

$$U = \text{Avctanx} \quad dv = dx$$

$$du = \frac{1}{1+x^2} dx \quad V = x$$

$$\int \frac{x}{1+x^2} dx = \frac{1}{2} \int \frac{du}{u}$$

$$= \frac{1}{2} \ln |u| = \frac{1}{2} \ln |1+x^2|$$

$$\int \text{avctanx} dx = x \text{avctanx} - \int \frac{x}{1+x^2} dx$$

$$\int \text{avctanx} dx = x \text{avctanx} - \frac{1}{2} \ln |1+x^2|$$

$$\int \text{avctanx} dx = x \text{avctanx} - \frac{1}{2} \ln |1+x^2| + C$$

$$\int \text{avctanx} dx = x \text{avctanx} - \frac{1}{2} \ln |1+x^2| + C$$

(b) Evaluate $\int \ln(z) dz$. Consider a similar substitution to the one in (a).

$$U = Mz \qquad dV = dz$$

$$du = \frac{1}{2}dz \qquad V = Z$$

$$\int Mzdz = Z[NZ - \int Z \frac{1}{2}dZ$$

$$= zMz - \int dz = Z[NZ - Z + C]$$

(c) Use the substitution $z = t^2$ to transform the integral $\int t^3 \sin(t^2) dt$ to a new integral in the variable z, and evaluate the new integral by parts.

the variable z, and evaluate the new integral by parts.

$$\int t^3 \sin(t^2) dt = \int t \cdot t^2 \sin(t^2) dt = \frac{1}{2} \left[-2\cos z + \sin z \right]$$

$$Z = t^2 \qquad dZ = 2t dt \qquad \frac{1}{2} dz = t dt = \frac{1}{2} \left[-t^2 \cos t^2 + \sin t^2 \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z + \sin z \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z + \sin z \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z + \sin z \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z - \int (-\cos z) dz \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z - \int (-\cos z) dz \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z - \int (-\cos z) dz \right]$$

$$\int t \cdot \left[t^2 \sin(t^2) dt \right] = \frac{1}{2} \left[-z \cos z - \int (-\cos z) dz \right]$$

(d) Evaluate $\int s^5 e^{s^3} ds$ using an approach similar to that described in (c).

$$\int s^2 e^{s^3} ds = \int s^2 s^3 e^{s^3} ds \qquad t = s^3 \quad dt = 3s^2 ds \qquad s^2 ds = \frac{dt}{3}$$

$$\frac{1}{3} \int t e^t dt = \frac{1}{3} \int t e^t - e^t \int + C = \frac{1}{3} \left[s^3 e^{s^3} - e^{s^3} \right] + C$$

$$\int \int s^3 e^{s^3} ds = \int s^2 s^3 e^{s^3} ds \qquad t = s^3 \quad dt = 3s^2 ds \qquad s^2 ds = \frac{dt}{3}$$

$$\int \int t e^t dt = \frac{1}{3} \left[\int t e^t - e^t \right] + C = \frac{1}{3} \left[\int s^3 e^{s^3} - e^{s^3} \right] + C$$

$$\int \int \int t e^t dt = \int \int t e^t ds = \int \int \int s^3 e^{s^3} ds \qquad t = s^3 \int ds = \frac{dt}{3}$$

(e) Evaluate $\int e^{2t} \cos(e^t) dt$. You will find it helpful to note that $e^{2t} = e^t \cdot e^t$.

ACTIVITY 5.4.2

Evaluate each of the following indefinite integrals.

(a)
$$\int x^2 \sin(x) dx$$
 $N = x^2$ $dv = \sin x dx$ $dv = 1 \times dx$ $V = -\cos x$ $\int x^2 \sin x dx = -x^2 \cos x + 2 \int x \cos x dx$ $\int x^2 \sin x dx = -x^2 \cos x + 2 \int x \cos x dx$ $\int x^2 \sin x dx = -x^2 \cos x + 2 \int x \cos x dx$ $\int x^2 \sin x dx = -x^2 \cos x + 2 x \sin x dx$

$$dv = x$$
 $dv = cos x dx$
 $dv = cos x dx$
 $dv = cos x dx$

$$\int x \cos x dx = x \sin x - \int \sin x dx$$

$$= x \sin x + \cos x$$
(b) $\int t^3 \ln(t) dt$

$$U = \text{Int} \quad du = \frac{dt}{t}$$

$$dv = t^{3}dt \quad V = \frac{t^{4}}{t}$$

$$\int t^{3} \ln t \, dt = \frac{t^{4}}{t} \ln t - \int \frac{t^{4}}{t} \, dt$$

$$= \frac{t^{4}}{t} \ln t - \frac{1}{4} \int t^{3}dt$$

$$\int x^2 \sin x \, dx = -x^2 \cos x + 2x \sin x + \cos x + C$$

$$=\frac{t^{4}}{4} \text{ int } -\frac{1}{16} t^{4} + C$$

(c)
$$\int e^z \sin(z) dz$$
 Let's call $\underline{T} = \int e^z \sin z dz$

$$U=e^{z}$$
 $dv = \sin z dz$
 $du=e^{z}dz$ $V=-\cos z$

$$I = -e^{z}\cos z + \int e^{z}\cos z dz$$

Now let $u=e^{z}$ $dv=\cos z dz$
and integrate by parts again

(d)
$$\int s^2 e^{3s} ds$$

 $v = S^2$ $du = 2s ds$
 $dv = e^{35} ds$ $v = \frac{1}{3}e^{35}$

$$\int s^2 e^{35} ds = \frac{1}{3} s^2 e^{35} - \frac{2}{3} \int s e^{35} ds$$

$$= \frac{1}{3} s^2 e^{35} - \frac{2}{3} \int s e^{35} ds$$

$$= \frac{1}{3} s^2 e^{35} - \frac{2}{3} s e^{35} + \frac{2}{27} e^{35} + C$$

$$v = S du = ds$$

$$dv = e^{35} ds$$

$$v = \frac{1}{3} e^{35} ds$$

$$v = \frac{1}{3} e^{35} ds$$

$$U=e^{z} \quad dv = \sin z \, dz$$

$$du = e^{z} dz \quad V = \sin z$$

$$du = e^{z} dz \quad V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$I = -e^{z} \cos z + \left[e^{z} \cos z \, dz\right]$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$I = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$V = \sin z$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = \sin z$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \sin z - \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z + \int e^{z} \sin z \, dz\right]$$

$$V = -e^{z} \cos z + \left[e^{z} \cos z +$$

Now let
$$u=e^2 dv = \cos z dz$$
 $2I = -e^2 \cos z + e^2 \sin z$ and integrate by parts again $I = \frac{1}{2}(-e^2 \cos z + e^2 \sin z) + C$

$$= \frac{1}{3}s^{2}e^{35} - \frac{2}{3}\left[\frac{se^{35}}{3} - \frac{1}{3}\left(e^{35}ds\right)\right]$$
$$= \frac{1}{3}s^{2}e^{35} - \frac{2}{9}se^{35} + \frac{2}{27}e^{35} + C$$

(e) $\int t \arctan(t) dt$ (**Hint:** At a certain point in this problem, it is very helpful to note that $\frac{t^2}{1+t^2} = 1 - \frac{1}{1+t^2}$.)

$$u = \operatorname{arctant} du = \frac{dt}{1+t^2}$$

$$dv = fdt$$
 $v = \frac{t^2}{2}$

$$\int t \operatorname{av} C fant df = \frac{t^2}{2} \operatorname{av} C fant$$

$$-\frac{1}{2} \int \frac{t^2}{1+t^2} dt$$

$$= \frac{t^2}{2} \operatorname{arctan}(t) - \frac{1}{2}t$$

$$+ \frac{1}{2} \operatorname{arctan}(t) + C$$