$\S 5.$	4		
Fall	MATH	1120	Lec003

NAME: 29 August - 2 September 2022

INTEGRATION BY PARTS

REVIEW

• **Product Rule:** Let u and v be differentiable functions. Then the derivative of the product is given by

$$\frac{\mathrm{d}}{\mathrm{d}x}(u \cdot v) = u \cdot \frac{\mathrm{d}v}{\mathrm{d}x} + \frac{\mathrm{d}u}{\mathrm{d}x} \cdot v$$

Main Concepts

• Integrating by parts can be used to compute integrals of the form $\int f(x)g'(x) dx$:

$$\int f(x) g'(x) dx = f(x) g(x) - \int g(x) f'(x) dx$$

It is also expressed as

$$\int u \, \mathrm{d}v = u \, v - \int v \, \mathrm{d}u$$

where u = f(x), du = f'(x) dx, v = g(x) and dv = g'(x) dx.

ACTIVITIES

ACTIVITY 5.4.2

Evaluate each of the following indefinite integrals. Check each antiderivative that you find by differentiating.

(a) $\int te^{-t} dt$

(b) $\int 4x \sin(3x) dx$

(c) $\int z \sec^2(z) dz$

(d) $\int x \ln(x) dx$

ACTIVITY 5.4.2

Evaluate each of the following indefinite integrals, using the provided hints.

(a) Evaluate $\int \arctan(x) dx$ by using Integration by Parts with the substitution $u = \arctan(x)$ and dv = 1 dx.

(b) Evaluate $\int \ln(z) dz$. Consider a similar substitution to the one in (a).

(c) Use the substitution $z=t^2$ to transform the integral $\int t^3 \sin(t^2) dt$ to a new integral in the variable z, and evaluate the new integral by parts.

(d) Evaluate $\int s^5 e^{s^3} ds$ using an approach similar to that described in (c).

(e) Evaluate $\int e^{2t} \cos(e^t) dt$. You will find it helpful to note that $e^{2t} = e^t \cdot e^t$.

ACTIVITY 5.4.2

Evaluate each of the following indefinite integrals.

(a) $\int x^2 \sin(x) dx$

(b) $\int t^3 \ln(t) dt$

(c) $\int e^z \sin(z) dz$

(d) $\int s^2 e^{3s} \, \mathrm{d}s$

(e) $\int t \arctan(t) dt$ (**Hint:** At a certain point in this problem, it is very helpful to note that $\frac{t^2}{1+t^2} = 1 - \frac{1}{1+t^2}$.)