Alternative Methods for Finding Antiderivatives

Main Concepts

- Partial Fractions: Used for integrating rational functions, i.e. $\frac{P(x)}{Q(x)}$ where P and Q are polynomials and Q has a higher degree than P. For the types of problems we are interested in, examples/guidelines can be followed to obtain a partial fraction decomposition:

1. Factor the denominator polynomial Q.
2. Write your fraction as a sum of simpler fractions multiplied with constant coefficients, where the denominators are the factors of $Q(x)$. For example,

$$
\frac{2 x+1}{(x-1)(x-2)}=\frac{A}{x-1}+\frac{B}{x-2} .
$$

3. If the denominator $Q(x)$ has quadratic factors, then use $A x+B$ as one of the coefficients instead of a constant, for example,

$$
\frac{1}{\left(x^{2}+1\right)(x-1)}=\frac{A x+B}{x^{2}+1}+\frac{C}{x-1}
$$

4. If the denominator has the same factor repeated n times, then include that factor n times in the decomposition, but with powers ranging from 1 to n. For example:

$$
\frac{x^{2}+1}{(x-1)^{3}}=\frac{A}{x-1}+\frac{B}{(x-1)^{2}}+\frac{C}{(x-1)^{3}} .
$$

5. If the denominator has a mix of the above three scenarios, then combine the guidelines from above appropriately.
6. Solve for the constants A, B, C etc.

- Integral Tables and Computer Algebra: You can use integral tables or computer algebra to solve integrals

Practice Problems

Find the partial fraction decompositions for the following:

1. $\frac{3 x+11}{x^{2}-x-6}$

$$
\frac{-1}{x+2}+\frac{4}{x-3}
$$

2. $\frac{1}{(x-1)^{2}(x+1)}$

$$
\frac{-1}{4(x-1)}+\frac{1}{2(x-1)^{2}}+\frac{1}{4(x+1)}
$$

3. $\frac{1}{(x-1)\left(x^{2}+1\right)}$

$$
\frac{1}{2(x-1)}-\frac{x+1}{2\left(x^{2}+1\right)}
$$

Activities

Activity 5.5.2

For each of the following problems, evaluate the integral by using the partial fraction decomposition provided.
(a) $\int \frac{1}{x^{2}-2 x-3} \mathrm{~d} x$, given that $\frac{1}{x^{2}-2 x-3}=\frac{1 / 4}{x-3}-\frac{1 / 4}{x+1}$.

$$
\begin{aligned}
\int \frac{1}{x^{2}-2 x-3} d x & =\frac{1}{4} \int \frac{d x}{x-3}-\frac{1}{4} \int \frac{d x}{x+1} \\
& =\frac{1}{4} \ln (|x-3|)-\frac{1}{4} \ln (|x+1|)+C \\
& =\frac{1}{4} \ln \left(\frac{|x-3|}{|x+1|}\right)+C
\end{aligned}
$$

(b) $\int \frac{x^{2}+1}{x^{3}-x^{2}} \mathrm{~d} x$, given that $\frac{x^{2}+1}{x^{3}-x^{2}}=-\frac{1}{x}-\frac{1}{x^{2}}+\frac{2}{x-1}$.

$$
\int \frac{x^{2}+1}{x^{3}-x^{2}} d x=-\int \frac{d x}{x}-\int \frac{d x}{x^{3}}+\int \frac{2 d x}{x-1}=-\ln |x|+\frac{1}{2 x^{2}}+\ln |x-1|+C
$$

(c) $\int \frac{x-2}{x^{4}+x^{2}} \mathrm{~d} x$, given that $\frac{x-2}{x^{4}+x^{2}}=\frac{1}{x}-\frac{2}{x^{2}}+\frac{-x+2}{1+x^{2}}$.

$$
\begin{aligned}
& \int \frac{x-2}{x^{4}+x^{2}} d x=\int \frac{1}{x} d x-\int \frac{2 d x}{x^{2}}-\int \frac{x-2}{1+x^{2}} d x \\
& =\ln |x|+\frac{2}{x}-\int \frac{x}{1+x^{2}} d x+\int \frac{2}{1+x^{2}} d x \\
& \frac{1}{2} \int \frac{d t}{t}=\frac{1}{2} \tan |t|=\frac{1}{2} \ln \left|1+x^{-1}\right| \\
& =\ln |x|+\frac{2}{x}-\frac{1}{2} \ln \left|1+x^{2}\right|+2 x d x
\end{aligned}
$$

Activity 5.5.3
For each of the following integrals, evaluate the integral using u-substitution, and/or using an entry from the following integral table:

$$
\begin{aligned}
& \text { (i) } \int \frac{\mathrm{d} u}{u^{2} \sqrt{a^{2}-u^{2}}}=-\frac{\sqrt{a^{2}-u^{2}}}{a^{2} u}+C \\
& \text { (ii) } \int \sqrt{u^{2} \pm a^{2}} \mathrm{~d} u=\frac{u}{2} \sqrt{u^{2} \pm a^{2}} \pm \frac{a^{2}}{2} \ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|+C \\
& \text { (iii) } \int \frac{\mathrm{d} u}{\sqrt{u^{2} \pm a^{2}}}=\ln \left|u+\sqrt{u^{2} \pm a^{2}}\right|+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (a) } \int \sqrt{x^{2}+4} d x \\
& \text { Use (ii) with " }{ }^{\prime \prime} \text { and } a=2 \quad u=x \\
& \int \sqrt{x^{2}+4} d x=\int \sqrt{u^{2}+2^{2}} d u
\end{aligned} \begin{aligned}
& =\frac{u}{2} \sqrt{u^{2}+4}+\frac{4}{2} \ln \left|u+\sqrt{u^{2}+4}\right|+C \\
& =\frac{x}{2} \sqrt{x^{2}+4}+2 \ln \left|x+\sqrt{x^{2}+4}\right|+C
\end{aligned}
$$

(b) $\int \frac{x}{\sqrt{x^{2}+4}} \mathrm{~d} x$

$$
\begin{aligned}
& \text { let } x^{2}+4=u \quad d u=2 x d x \\
& =\frac{1}{2} \int \frac{d u}{\sqrt{u}}=\frac{1}{2} \frac{\sqrt{u}}{1 / 2}=\sqrt{x^{2}+4}+C
\end{aligned}
$$

(c) $\int \frac{2}{\sqrt{16+25 x^{2}}} \mathrm{~d} x$
use (iii) with " ${ }^{\prime \prime}$ ", $a=4, \quad u=5 x \quad(d u=5 d x)$

$$
\begin{aligned}
\int \frac{2}{\sqrt{4^{2}+(5 x)^{2}}} d x=\frac{2}{5} \int \frac{d u}{\sqrt{4^{2}+u^{2}}} & =\frac{2}{5} \ln \left|u+\sqrt{u^{2}+4^{2}}\right|+C \\
& =\frac{2}{5} \ln \left|5 x+\sqrt{25 x^{2}+16}\right|+C
\end{aligned}
$$

$$
\begin{aligned}
& \text { (d) } \int \frac{1}{x^{2} \sqrt{49-36 x^{2}}} \mathrm{~d} x \\
& \text { Use (i) with "e", } a=7 \quad u=6 x \quad d u=6 d x \\
& \int \frac{36 \longrightarrow \text { multiply andivide by } 36}{36 x^{2} \sqrt{7^{2}-(6 x)^{2}}} d x=\int \frac{36 d x}{(6 x)^{2} \sqrt{7^{2}-(6 x)^{2}}}={ }^{6} 6 \int \frac{1}{u^{2} \sqrt{7^{2}-4^{2}}} \frac{d x}{66} \\
& =6 \cdot \int \frac{d x}{u^{2} \sqrt{7^{2}-u^{2}}} \\
& =\frac{-6 \sqrt{7^{2}-u^{2}}}{7^{2} u}+C \\
& =\frac{-6 \sqrt{49-36 x^{2}}}{49(6 x)} \\
& =-\frac{\sqrt{49-36 x^{2}}}{49 x}+C
\end{aligned}
$$

