§6.	2		
Fall	MATH	1120	Lec003

NAME: _					
	10.0	1	100	1	2022

12 September - 16 September 2022

Solids of Revolution and their Volumes

Main Concepts

- Solids of Revolution are obtained by revolving curves around a fixed axis.
- **Disk method:** Used to compute volumes of solids generated by revolving a single curve. Suppose y = r(x) is a nonnegative continuous function on [a, b], then the volume of the solid of revolution given by revolving the curve about the x-axis over the interval is given by:

$$V = \int_a^b \pi r(x)^2 \, \mathrm{d}x$$

• Washer method: Suppose R(x) and r(x) are nonnegative continuous functions on [a,b] that satisfy $R(x) \ge r(x)$ for all x in [a,b], the solid of revolution has volume

$$V = \int_{a}^{b} \pi [R(x)^{2} - r(x)^{2}] dx$$

• When the curve is revolved around a different axis, say y = a, the volume of the solid of revolution can be computed after shifting the curve by a, viz., R(x-a) and r(x-a).

ACTIVITIES

ACTIVITY 6.2.2

In each of the following questions, draw a careful, labeled sketch of the region described, as well as the resulting solid that results from revolving the region about the stated axis. In addition, draw a representative slice and state the volume of that slice, along with a definite integral whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you find.

(a) The region S bounded by the x-axis, the curve $y = \sqrt{x}$, and the line x = 4; revolve S about the x-axis.

Disk method:

$$V = \pi \int (\sqrt{x})^3 dx$$

$$= \pi \int x dx = 8\pi$$

(b) The region S bounded by the y-axis, the curve $y = \sqrt{x}$, and the line y = 2; revolve S about the x-axis.

$$\pi \int_{0}^{4} (2)^{2} (\sqrt{x})^{2} dx = \pi \int_{0}^{4} k - x dx$$

(c) The finite region S bounded by the curves $y = \sqrt{x}$ and $y = x^3$; revolve S about the x-axis.

$$\sqrt{\chi} = \chi^{3} \implies \chi = \chi^{6} \qquad \chi^{6} - \chi = 0$$

$$\chi = 0 \qquad \chi = 1$$

$$V = \int_{0}^{\pi} \pi(x - \chi^{6}) dx = \frac{5}{10\pi} \pi$$

(d) The finite region S bounded by the curves $y = 2x^2 + 1$ and $y = x^2 + 4$; revolve S about the x-axis.

 $2x^2 + 1 = x^2 + 4$

$$x^{2} = 3$$
 $x = \pm \sqrt{3}$
 $\pi \int (x^{2} + 4x^{2} - (2x^{2} + 1)^{2} dx = 136\sqrt{3} \pi$

(e) The region S bounded by the y-axis, the curve $y = \sqrt{x}$, and the line y = 2; revolve S about the y-axis. How is this problem different from the one posed in part (b)?

$$\int_{0}^{2} \pi(y^{2})^{2} dy = \frac{32}{5} \pi$$

ACTIVITY 6.2.3

In each of the following questions, draw a careful, labeled sketch of the region described, as well as the resulting solid that results from revolving the region about the stated axis. In addition, draw a representative slice and state the volume of that slice, along with a definite integral whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you find.

(a) The region S bounded by the y-axis, the curve $y = \sqrt{x}$, and the line y = 2; revolve S about the y-axis.

Same as above

(b) The region S bounded by the y-axis, the curve $y=\sqrt{x}$, and the line x=4; revolve S about the y-axis.

$$\pi \int (4)^2 - (y^2)^2 dy$$

(c) The finite region S in the first quadrant bounded by the curves y = 2x and $y = x^3$; revolve S about the x-axis.

The volve is about the x-axis.

$$2x = x^3 \qquad x = 0 \quad \text{or} \quad x = \sqrt{2}$$
(first quadrat)

$$\sqrt{2}$$

(d) The finite region S in the first quadrant bounded by the curves y = 2x and $y = x^3$; revolve S about the y-axis.

(e) The finite region S bounded by the curves $x = (y-1)^2$, and y = x-1; revolve S about the y-axis.

In each of the following questions, draw a careful, labeled sketch of the region described, as well as the resulting solid that results from revolving the region about the stated axis. In addition, draw a representative slice and state the volume of that slice, along with a definite integral whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you find. For each prompt, use the finite region S in the first quadrant bounded by the curves y = 2x and $y = x^3$.

(b) Revolve S about the line y = 4.

(c) Revolve S about the line x = -1.

Write in terms of g: $x = y^{1/3} \times = y/2$

Intersection: y=2√2

$$V = \pi \left(y^{1/3} + 1 \right)^2 - \left(y_2 + 1 \right)^2 dy$$

(d) Revolve S about the line x = 5.

$$\sqrt{\frac{1}{3}}$$

$$\sqrt{\frac$$

 $V = J \int_{0}^{2\sqrt{2}} (5 - y/2)^{2} - (5 - y'/3)^{2} dy$

(b) Outer radius =
$$4 - x^3$$
 $V = \pi \int (4 - x^3)^2 - (4 - 2x) dx$

