\qquad

Solids of Revolution and their Volumes

Main Concepts

- Solids of Revolution are obtained by revolving curves around a fixed axis.
- Disk method: Used to compute volumes of solids generated by revolving a single curve. Suppose $y=r(x)$ is a nonnegative continuous function on $[a, b]$, then the volume of the solid of revolution given by revolving the curve about the x-axis over the interval is given by:

$$
V=\int_{a}^{b} \pi r(x)^{2} \mathrm{~d} x
$$

- Washer method: Suppose $R(x)$ and $r(x)$ are nonnegative continuous functions on $[a, b]$ that satisfy $R(x) \geq r(x)$ for all x in $[a, b]$, the solid of revolution has volume

$$
V=\int_{a}^{b} \pi\left[R(x)^{2}-r(x)^{2}\right] \mathrm{d} x
$$

- When the curve is revolved around a different axis, say $y=a$, the volume of the solid of revolution can be computed after shifting the curves by a and determining the radii with respect to the new axis of revolution.

Activities

Activity 6.2.2
In each of the following questions, draw a careful, labeled sketch of the region described, as well as the resulting solid that results from revolving the region about the stated axis. In addition, draw a representative slice and state the volume of that slice, along with a definite integral whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you find.
(a) The region S bounded by the x-axis, the curve $y=\sqrt{x}$, and the line $x=4$; revolve S about the x-axis.
(b) The region S bounded by the y-axis, the curve $y=\sqrt{x}$, and the line $y=2$; revolve S about the x-axis.
(c) The finite region S bounded by the curves $y=\sqrt{x}$ and $y=x^{3}$; revolve S about the x-axis.
(d) The finite region S bounded by the curves $y=2 x^{2}+1$ and $y=x^{2}+4$; revolve S about the x-axis.
(e) The region S bounded by the y-axis, the curve $y=\sqrt{x}$, and the line $y=2$; revolve S about the y-axis. How is this problem different from the one posed in part (b)?

Activity 6.2.3

In each of the following questions, draw a careful, labeled sketch of the region described, as well as the resulting solid that results from revolving the region about the stated axis. In addition, draw a representative slice and state the volume of that slice, along with a definite integral whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you find.
(a) The region S bounded by the y-axis, the curve $y=\sqrt{x}$, and the line $y=2$; revolve S about the y-axis.
(b) The region S bounded by the y-axis, the curve $y=\sqrt{x}$, and the line $x=4$; revolve S about the y-axis.
(c) The finite region S in the first quadrant bounded by the curves $y=2 x$ and $y=x^{3}$; revolve S about the x-axis.
(d) The finite region S in the first quadrant bounded by the curves $y=2 x$ and $y=x^{3}$; revolve S about the y-axis.
(e) The finite region S bounded by the curves $x=(y-1)^{2}$, and $y=x-1$; revolve S about the y-axis.

Activity 6.2.4

In each of the following questions, draw a careful, labeled sketch of the region described, as well as the resulting solid that results from revolving the region about the stated axis. In addition, draw a representative slice and state the volume of that slice, along with a definite integral whose value is the volume of the entire solid. It is not necessary to evaluate the integrals you find. For each prompt, use the finite region S in the first quadrant bounded by the curves $y=2 x$ and $y=x^{3}$.
(a) Revolve S about the line $y=-2$.
(b) Revolve S about the line $y=4$.
(c) Revolve S about the line $x=-1$.
(d) Revolve S about the line $x=5$.

