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Fall MATH 1120 Lec003 26 September - 30 September 2022

WORK, FORCE AND PRESSURE

MAIN CONCEPTS

e Work: The work done to move an object on the z-axis from a to b by a force F'(x) is
given by

W:/abF(gs)dx

e Pumping Liquid from a Tank:

1. Determine the volume of a slice of thickness Az at location x, Vijice = Aglice () Axx.

2. Find the weight (force), Fyjice(z) = pViiice of that slice (remember to multiply by
acceleration due to gravity, g = 9.81m/s? if using metric units!).

3. Determine the distance, dgic.(z) that the slice a x has to move.
4. The work done to move the slice is then given by Wjice = Fulicedstice = P Aslice AT dglice-

5. The total work done to move the entire liquid is then given by integrating the
over the slices (Az — dx), i.e., W = [ pAgicedsiice dz and the limits of integration
are the x limits of the tank.

e Pressure: P=F/Aand FF=P - A.



ACTIVITIES

AcTIviTy 6.4.2
Consider the following situations in which a varying force accomplishes work.

(a) Suppose that a heavy rope hangs over the side of a cliff. The rope is 200 feet long
and weighs 0.3 pounds per foot; initially the rope is fully extended. How much work is
required to haul in the entire length of the rope? (Hint: set up a function F'(h) whose
value is the weight of the rope remaining over the cliff after h feet have been hauled
in.)
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(b) A leaky bucket is being hauled up from a 100 foot deep well. When lifted from the
water, the bucket and water together weigh 40 pounds. As the bucket is being hauled
upward at a constant rate, the bucket leaks water at a constant rate so that it is losing
weight at a rate of 0.1 pounds per foot. What function B(h) tells the weight of the
bucket after the bucket has been lifted h feet? What is the total amount of work
accomplished in lifting the bucket to the top of the well?
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(c) Now suppose that the bucket in (b) does not leak at a constant rate, but rather that
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its weight at height h feet above the water is given by B(h) = 25 + 15¢=%%" What is
the total work required to lift the bucket 100 feet? What is the average force exerted
on the bucket on the interval h = 0 to h = 1007
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(d) From physics, Hooke’s Law for springs states that the amount of force required to hold
a spring that is compressed (or extended) to a particular length is proportionate to
the distance the spring is compressed (or extended) from its natural length. That is,
the force to compress (or extend) a spring x units from its natural length is F'(z) = kz
for some constant k (which is called the spring constant.) For springs, we choose to
measure the force in pounds and the distance the spring is compressed in feet. Suppose
that a force of 5 pounds extends a particular spring 4 inches (1/3 foot) beyond its
natural length.

(i) Use the given fact that F'(1/3) =5 to find the spring constant k.
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(ii) Find the work done to extend the spring from its natural length to 1 foot beyond
its natural length.

W = S\;Cﬂéx : |j Sxdr = 15 LE LD
2

3 0



(iii) Find the work required to extend the spring from 1 foot beyond its natural length
to 1.5 feet beyond its natural length
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AcTIVITY 6.4.3

In each of the following problems, determine the total work required to accomplish the
described task. In parts (b) and (c), a key step is to find a formula for a function that
describes the curve that forms the side boundary of the tank.

Figure 1: A trough with triangular ends

(a) Consider a vertical cylindrical tank of radius 2 meters and depth 6 meters. Suppose
the tank is filled with 4 meters of water of mass density 1000 kg/m?3, and the top 1
meter of water is pumped over the top of the tank.
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(b) Consider a hemispherical tank with a radius of 10 feet. Suppose that the tank is full
to a depth of 7 feet with water of weight density 62.4 pounds/ft®, and the top 5 feet of
water are pumped out of the tank to a tanker truck whose height is 5 feet above the

top of the tank. '
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(c) Consider a trough with trlangular ends, as pictured in Flgure 1, where the tank is 10
feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that the trough is full
to within 1 foot of the top with water of weight density 62.4 pounds/ft3, and a pump
is used to empty the tank until the water remaining in the tank is 1 foot deep.
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AcTIVITY 6.4.4 {

In each of the following problems, determine the total force exerted by water against the
surface that is described.

(a) Consider a rectangular dam that is 100 feet wide and 50 feet tall, and suppose that
water presses against the dam all the way to the top.
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(b) Consider a semicircular dam with a radius of 30 feet. Suppose that the water rises to
within 10 feet of the top of the dam.
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(c) Consider a trough with triangular ends, as pictured in Figure 1, where the tank is 10
feet long, the top is 5 feet wide, and the tank is 4 feet deep. Say that the trough is full
to within 1 foot of the top with water of weight density 62.4 pounds/ft3. How much
force does the water exert against one of the triangular ends?
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