Qualitative Behaviour of Solutions to Differential Equations

Main Concepts

- Observe that a differential equation of the form $\frac{\mathrm{d} y}{\mathrm{~d} t}=f(y, t)$ describes the slope of y (i.e. its derivative) as a function of y and t.
- A Slope Field is a obtained by graphing the slope or tangent line at different points on the $t-y$ plane.
- Once a slope field is obtained, the graph of a solution can be plotted by drawing a curve that is tangent to the lines of the slope field. This would amount to starting at some point in the $t-y$ plane and "following the arrows" given by the slope field.
- Autonomous differential equations, $\frac{\mathrm{d} y}{\mathrm{~d} t}=f(y)$ can sometimes have solutions that are constant in time. These are known as equilibrium solutions.
- Equilibrium solutions are obtained by solving the equation $f(y)=0$.
- An equilibrium solution is stable if nearby solutions are "pulled in" as time progresses.
- An equilibrium solution is unstable if nearby solutions are "pushed away" as time progresses.

Activities

Activity 7.2.2

Consider the autonomous differential equation

$$
\frac{d y}{d t}=-\frac{1}{2}(y-4) .
$$

(a) Make a plot of $\frac{d y}{d t}$ versus y on the axes on Figure 1. Looking at the graph, for what values of y does y increase and for what values of y does y decrease?

Figure 1: Axes for plotting $\frac{d y}{d t}$ versus y
(b) Next, sketch the slope field for this differential equation on the axes on Figure 2

Figure 2: Axes for plotting the slope field
(c) Use your work in (b) to sketch (on the same axes as in Figure 2) solutions that satisfy $y(0)=0, y(0)=2$, and $y(0)=6$.
(d) Verify that $y(t)=4+2 e^{-t / 2}$ is a solution to the given differential equation with the initial values $y(0)=6$. Compare its graph to the one you sketched in (c).

$$
\begin{array}{ll}
\text { LHS: } \frac{d y}{d t}=2\left(-\frac{1}{2}\right) e^{-t / 2}=-e^{-t / 2} \\
\text { RHS: } \frac{-1}{2}(y-4)=-\frac{1}{2}\left(4+2 e^{-t / 2}-4\right)=-\frac{1}{2}\left(2 e^{-t / 2}\right)=-e^{-t / 2} & =\begin{aligned}
y(0) & =4+2 e^{0} \\
& =6
\end{aligned}
\end{array}
$$

(e) What is special about the solution where $y(0)=4$?
the solution is the constant function.

Activity 7.2.3

Consider the autonomous differential equation

$$
\frac{d y}{d t}=-\frac{1}{2} y(y-4) .
$$

(a) Make a plot of $\frac{d y}{d t}$ versus y on the axes provided in Figure 3. Looking at the graph, for what values of y does y increase and for what values of y does y decrease?

Figure 3: Axes for plotting $\frac{d y}{d t}$ versus y
(b) Identify any equilibrium solutions of the given differential equation.

$$
y=0 \quad \text { and } \quad y=4
$$

(c) Now sketch the slope field for the given differential equation on the axes provided in Figure 4

Figure 4: Axes for plotting the slope field
(d) Sketch the solutions to the given differential equation that correspond to initial values $y(0)=-1,0,1, \ldots, 5$.
(e) An equilibrium solution \bar{y} is called stable if nearby solutions converge to \bar{y}. This means that if the initial condition varies slightly from \bar{y}, then $\lim _{t \rightarrow \infty} y(t)=\bar{y}$. Conversely, an equilibrium solution \bar{y} is called unstable if nearby solutions are pushed away from \bar{y}. Using your work above, classify the equilibrium solutions you found in (b) as either stable or unstable.

$$
\begin{aligned}
& y=4 \text { is stable } \\
& y=0 \text { is unstable }
\end{aligned}
$$

(f) Suppose that $y(t)$ described the population of a species of living organisms and that the initial value $y(0)$ is positive. What can you say about the eventual fate of this population?

$$
\begin{aligned}
& \text { The population will tend to } 4 \\
& \text { eventually }
\end{aligned}
$$

(g) Now consider a general autonomous differential equation of the form $d y / d t=f(y)$. Remember that an equilibrium solution \bar{y} satisfies $f(\bar{y})=0$. If we graph $d y / d t=f(y)$ as a function of y, for which of the differential equations represented in Figure 5 is \bar{y} a stable equilibrium and for which is \bar{y} unstable? Why?

Figure 5: Plots of $\frac{d y}{d t}$ as a function of y

