NAME:

17 October - 21 October 2022

Euler's Method

MAIN CONCEPTS

- Euler's method is a technique/algorithm used to approximate the solution to a differential equation.
- Consider the differential equation $\frac{dy}{dt} = f(y,t)$ and suppose we know that at $t = t_0$ $y(t_0) = y_0$. It's useful to think of y as position and t as time (although this may not always be true literally). Euler's method can be heuristically described in the following way:
 - The main idea is to think of moving forward in small time steps Δt .
 - At $t = t_0$, the slope is given by the $f(y_0, t_0)$.
 - In a time step of Δt , you would move a distance $f(y_0, t_0)\Delta t$.
 - Since you started at position y_0 at time t_0 , your position would change to $y_0 + f(y_0, t_0)\Delta t$ at the new time $t_0 + \Delta t$. We write $y_1 = y_0 + f(y_0, t_0)\Delta t$ and $t_1 = t_0 + \Delta t$ as the new position and new time.
 - We now repeat the above steps, but our starting position and time are y_1 and t_1 rather than y_0 and t_0 . So we get a new position and time which are $y_2 = y_1 + f(y_1, t_1)\Delta t$ and $t_2 = t_1 + \Delta t$.
 - In general, at step n, our position is given by $y_n = y_{n-1} + f(y_{n-1}, t_{n-1})\Delta t$.

ACTIVITIES

Activity 7.3.2

Consider the initial value problem

$$\frac{dy}{dt} = 2t - 1, y(0) = 0.$$

(a) Use Euler's method with $\Delta t = 0.2$ to approximate the solution at $t_i = 0.2, 0.4, 0.6, 0.8$, and 1.0. Record your work in the following table and sketch the points (t_i, y_i) on the axes provided

Figure 1: Grid for plotting points generated by Euler's method

t_i	y_i	dy/dt	Δy
0.0000	0.0000		
0.2000			
0.4000			
0.6000			
0.8000			
1.0000			

- (b) Find the exact solution to the original initial value problem and use this function to find the error in your approximation at each one of the points t_i .
- (c) Explain why the value y_5 generated by Euler's method for this initial value problem produces the same value as a left Riemann sum for the definite integral $\int_0^1 (2t-1) dt$.
- (d) How would your computations differ if the initial value was y(0) = 1? What does this mean about different solutions to this differential equation?

Activity 7.2.3

Consider the differential equation

$$\frac{dy}{dt} = 6y - y^2.$$

(a) Sketch the slope field for this differential equation on the axes provided in Figure 2

Figure 2: Grid for plotting the slope field

- (b) Identify any equilibrium solutions and determine whether they are stable or unstable.
- (c) What is the long-term behavior of the solution that satisfies the initial value y(0) = 1?
- (d) Using the initial value y(0) = 1, use Euler's method with $\Delta t = 0.2$ to approximate the solution at $t_i = 0.2, 0.4, 0.6, 0.8$, and 1.0. Record your results in the table below and sketch the corresponding points (t_i, y_i) on the axes provided on Figure 3. Note the different horizontal scale on the axes on Figure 2 and Figure 3

Figure 3: Grid for plotting points generated by Euler's method

t_i	y_i	dy/dt	Δy
0.0000	1.0000		
0.2000			
0.4000			
0.6000			
0.8000			
1.0000			

(e) What happens if we apply Euler's method to approximate the solution with y(0) = 6?