Name:
31 October - 04 November 2022

Sequences

Main Concepts

- A sequence is a (possibly infinite) list of numbers $s_{1}, s_{2}, s_{3}, \ldots$ in specified order. Examples:
(a) $1,2,3,4, \ldots$
(b) $2,4,6,8, \ldots$
(c) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$
- s_{n} is referred to as the $n^{\text {th }}$ term of the sequence.
- A sequence can be thought of as a function whose domain is the set of positive integers,

$$
f(n)=s_{n}
$$

For example:
(a) $f(n)=n$ gives the sequence $1,2,3,4, \ldots$
(b) $f(n)=2 n$ gives the sequence $2,4,6,8, \ldots$
(c) $f(n)=\frac{1}{n}$ gives the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$

- When we say that a sequence $\left\{a_{n}\right\}$ converges to the number L, we mean that a_{n} can be made as close to L as we like by taking n to be large enough.
- Formal definition: We say that $\left\{a_{n}\right\}$ converges to the limit L and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if, for every $\epsilon>0$, there exists $N>0$ such that

$$
\left|L-a_{n}\right|<\epsilon
$$

for all $n>N$.

Activities

Activity 1

Figure 1 shows triangular numbers. The n-th triangular number T_{n} is the number of dots arranged in an equilateral triangle with n dots on the side.

Figure 1: Triangular numbers
(a) How is T_{n} related to T_{n-1} ? (Hint: try to argue using a picture with the triangles)
(b) Using the result in the previous part, find a formula involving summation for T_{n}. Check that your formula works for $n=1,2,3$.
(c) Find a formula for T_{n} that does not involve a summation sign. Check that your formula works for $n=1,2,3$.

Activity 2

Consider the sequence $\left\{T_{n}\right\}$ of triangular numbers.
(a) What is the function $f(n)$ that defines the n-th term of the sequence $\left\{T_{n}\right\}$?
(b) For each of the following expressions, identify if it is a number, sequence, or function:
(i) T_{n}
(ii) $\left\{T_{n+1}\right\}$
(iii) T_{3}
(iv) $\{f(n)\}$
(v) $f(n)$
(vi) $f(3)$

Activity 3

In this activity we will try to build some intuition about the definition of the limit of a sequence.
(a) Figure 2 shows a visual interpretation of the limit definition. We plot the sequence by

Figure 2: A visual interpretation of the limit
considering the graph $y=f(x)$ evaluated at integer values of x (so the plot consists of a bunch of disconnected points). We call the light blue region an " ε-band around L ", that is, the set of points in the plane whose y-coordinate lies between $L-\varepsilon$ and $L+\varepsilon$. Then the definition of limit could be restated as follows:
$\lim _{n \rightarrow \infty} a_{n}=L$ means that no matter how small ε is, we can always find a number N such that all points of the plotted sequence strictly to the right of the line $x=N$ lie within an ε-band around L.
(b) For each of these parts of the original definition, find the corresponding concept on the visual one:
(i) \ldots for every $\varepsilon>0 \ldots$
(ii) ...there exists $N>0 \ldots$
(iii) $\ldots\left|L-a_{n}\right|<\varepsilon$ for all $n>N$.
(c) For this part, we'll play a game. The sequence $\left\{a_{n}\right\}$ is given. Player A will try to show that the limit of the sequence is L, and player B will try to disprove it.

- then player A chooses a number L
- then player B chooses a margin of error ε
- then player A chooses a number N
- then to win, player B has to find a number n larger than N such that a_{n} is further from L than the margin of error ε. If player B can't find such a number, player A wins.

Then the definition of a limit could be restated as follows:
If player A has a winning strategy after choosing L then the sequence converges to L.
(d) For each of these parts of the original definition, find the corresponding concept on the game one:
(i) \ldots for every $\varepsilon>0 \ldots$
(ii) ...there exists $N>0 \ldots$
(iii) $\ldots\left|L-a_{n}\right|<\varepsilon$ for all $n>N$.

