$\begin{array}{l} \$8.1 \\ {\rm Fall \ MATH \ 1120 \ Lec003} \end{array}$

NAME:

31 October - 04 November 2022

SEQUENCES

MAIN CONCEPTS

- A sequence is a (possibly infinite) list of numbers $s_1, s_2, s_3, ...$ in specified order. Examples:
 - (a) $1, 2, 3, 4, \dots$
 - (b) $2, 4, 6, 8, \dots$
 - (c) $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
- s_n is referred to as the n^{th} term of the sequence.
- A sequence can be thought of as a function whose domain is the set of positive integers,

$$f(n) = s_n.$$

For example:

- (a) f(n) = n gives the sequence 1, 2, 3, 4, ...
- (b) f(n) = 2n gives the sequence 2, 4, 6, 8, ...
- (c) $f(n) = \frac{1}{n}$ gives the sequence $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$
- When we say that a sequence $\{a_n\}$ converges to the number L, we mean that a_n can be made as close to L as we like by taking n to be large enough.
- Formal definition: We say that $\{a_n\}$ converges to the limit L and write

$$\lim_{n \to \infty} a_n = L$$

if, for every $\epsilon > 0$, there exists N > 0 such that

$$|L - a_n| < \epsilon$$

for all n > N.

ACTIVITIES

ACTIVITY 1

Figure 1 shows triangular numbers. The *n*-th **triangular number** T_n is the number of dots arranged in an equilateral triangle with *n* dots on the side.

Figure 1: Triangular numbers

(a) How is T_n related to T_{n-1} ? (Hint: try to argue using a picture with the triangles)

(b) Using the result in the previous part, find a formula involving summation for T_n . Check that your formula works for n = 1, 2, 3.

(c) Find a formula for T_n that does not involve a summation sign. Check that your formula works for n = 1, 2, 3.

Activity 2

Consider the sequence $\{T_n\}$ of triangular numbers.

- (a) What is the function f(n) that defines the *n*-th term of the sequence $\{T_n\}$?
- (b) For each of the following expressions, identify if it is a number, sequence, or function: (i) T_n
 - (ii) $\{T_{n+1}\}$
 - (iii) T_3
 - (iv) $\{f(n)\}$
 - (v) f(n)
 - (vi) f(3)

ACTIVITY 3

In this activity we will try to build some intuition about the definition of the limit of a sequence.

(a) Figure 2 shows a visual interpretation of the limit definition. We plot the sequence by

Figure 2: A visual interpretation of the limit

considering the graph y = f(x) evaluated at integer values of x (so the plot consists of a bunch of disconnected points). We call the light blue region an " ε -band around L", that is, the set of points in the plane whose y-coordinate lies between $L - \varepsilon$ and $L + \varepsilon$. Then the definition of limit could be restated as follows:

 $\lim_{n\to\infty} a_n = L \text{ means that no matter how small } \varepsilon \text{ is, we can always find a number } N$ such that all points of the plotted sequence strictly to the right of the line x = N lie within an ε -band around L.

- (b) For each of these parts of the original definition, find the corresponding concept on the visual one:
 - (i) ... for every $\varepsilon > 0 \ldots$
 - (ii) ... there exists $N > 0 \ldots$
 - (iii) $\dots |L a_n| < \varepsilon$ for all n > N.

- (c) For this part, we'll play a game. The sequence $\{a_n\}$ is given. Player A will try to show that the limit of the sequence is L, and player B will try to disprove it.
 - then player A chooses a number L
 - then player B chooses a margin of error ε
 - then player A chooses a number N
 - then to win, player B has to find a number n larger than N such that a_n is further from L than the margin of error ε . If player B can't find such a number, player A wins.

Then the definition of a limit could be restated as follows:

If player A has a winning strategy after choosing L then the sequence converges to L.

- (d) For each of these parts of the original definition, find the corresponding concept on the game one:
 - (i) ... for every $\varepsilon > 0 \ldots$

(ii) ... there exists N > 0 ...

(iii) $\dots |L - a_n| < \varepsilon$ for all n > N.