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SEQUENCES CONTD.

REVIEW

e Formal definition: We say that {a,} converges to the limit L and write

lim a, = L
n—oo

if, for every € > 0, there exists N > 0 such that
|L —an| <e€

for all n > N.

MAIN CONCEPTS

e Theorem 1 If lim, .., f(z) exists, then the sequence a,, = f(n) converges to the same
limit
lim a, = lim f(z).
n—oo T—00

e Theorem 2 If f is continuous and lim,, ., a, = L, then

lim f(an) = f (lim a,) = (D).

n—o0

In other words, we may pass a limit of a sequence inside a continuous function.



ACTIVITIES

AcTIiviTYy 1
_ 142n
Let a, = 355.

(a) Can you guess what lim,,_,, a, is? (Hint: try to plug in a very large number for n)
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(b) Compute |an — %‘ and simplify it as much as possible.
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(c) Consider your expression for !an — %‘ from the previous part. Can you make it small
by increasing n?
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(d) How large would n have to be to ensure that ’an — %‘ <e?
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(e) Explain how this proves that lim, . a, = %, with all three interpretations (the defi-
nition, the visual one, and the game one).
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AcCTIVITY 2

For each of the following sequences, find a function defining them and use Theorem 1 to find
their limits.
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(a) Let {a,} be the sequence starting 2, 3, 5,
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(b) Let b, = %r;(") (Hint: you might want to use L'Hopital’s rule)
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AcTIviTy 3
Let f(z) = sin(zm) and let ¢, = f(n).
(a) What is lim, . f(2)?
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(c) Does this contradict Theorem 17 Explain.
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AcTIVITY 4

In this activity we will compute lim,,_,, a,, where {a,} is the sequence
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(a) Find a function f(x) such that f(n) = a,.
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(b) Let g(z) = In(f(z)). Find D
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(c) Consider the following argument

We found that lim, . g(x) = 0. We also know that g(x) = In(f(x)), and In(x) is
continuous so therefore we have

0= lim g(x) = lim In(f(z)) =In ( lim f(x))

T—r00 T—00 T—00

therefore, since In(1) = 0, by Theorem 2, we can conclude that lim,_,, f(z) = 1.

Is this argument correctly applying Theorem 27
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(d) Can you fix the argument in the previous part so that it correctly uses Theorem 27
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