SEquences contd.

Review

- Formal definition: We say that $\left\{a_{n}\right\}$ converges to the limit L and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

if, for every $\epsilon>0$, there exists $N>0$ such that

$$
\left|L-a_{n}\right|<\epsilon
$$

for all $n>N$.

Main Concepts

- Theorem 1 If $\lim _{x \rightarrow \infty} f(x)$ exists, then the sequence $a_{n}=f(n)$ converges to the same limit

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{x \rightarrow \infty} f(x)
$$

- Theorem 2 If f is continuous and $\lim _{n \rightarrow \infty} a_{n}=L$, then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f\left(\lim _{n \rightarrow \infty} a_{n}\right)=f(L)
$$

In other words, we may pass a limit of a sequence inside a continuous function.

Activities
Activity 1
Let $a_{n}=\frac{1+2 n}{3 n-2}$.
(a) Can you guess what $\lim _{n \rightarrow \infty} a_{n}$ is? (Hint: try to plug in a very large number for n)

$$
a_{n}=\frac{\frac{1}{n}+2}{3-\frac{2}{n}} \longrightarrow \frac{2}{3}
$$

(b) Compute $\left|a_{n}-\frac{2}{3}\right|$ and simplify it as much as possible.

$$
\left|\frac{1+2 n}{3 n-2}-\frac{2}{3}\right|=\left|\frac{3+6 n-6 n+4}{9 n-6}\right|=\left|\frac{7}{9 n-6}\right|
$$

(c) Consider your expression for $\left|a_{n}-\frac{2}{3}\right|$ from the previous part. Can you make it small by increasing n ?
yes
(d) How large would n have to be to ensure that $\left|a_{n}-\frac{2}{3}\right|<\varepsilon$?

$$
\frac{7}{9_{n-6}}<\varepsilon \quad \frac{7}{\varepsilon}<9 n-6 \quad n>\frac{7}{9 \varepsilon}+\frac{6}{9}
$$

(e) Explain how this proves that $\lim _{n \rightarrow \infty} a_{n}=\frac{2}{3}$, with all three interpretations (the definition, the visual one, and the game one).

$$
\begin{aligned}
& \text { For every } \varepsilon \text {, we have found } \\
& N=\left\lceil\frac{7}{a \varepsilon}+6 / 9\right\rceil \longrightarrow\lceil a\rceil \text { is notation } \\
& \\
& \text { for rounding up } a .
\end{aligned}
$$

Activity 2
For each of the following sequences, find a function defining them and use Theorem 1 to find their limits.
(a) Let $\left\{a_{n}\right\}$ be the sequence starting $2, \frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \ldots$.

$$
\begin{aligned}
a_{n}=\frac{n+1}{n} \quad f(x)=\frac{x+1}{x} \quad \lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{1+1 / x}{1} \\
& =1
\end{aligned}
$$

$$
\begin{aligned}
& \text { (b) Let } b_{n}=\frac{n+\ln (n)}{n^{2}} \text { (Hint: you might want to use L'Hôpital's rule) } \\
& \begin{aligned}
f(x)=\frac{x+\ln (x)}{x^{2}} \quad \lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{1+1 / x}{2 x} \\
& =0
\end{aligned}
\end{aligned}
$$

Activity 3
Let $f(x)=\sin (x \pi)$ and let $c_{n}=f(n)$.
(a) What is $\lim _{x \rightarrow \infty} f(x)$?

$$
\text { It doesn't exist }\left(\begin{array}{c}
\sin (\pi x) \text { just keeps } \\
\text { oscillating and } \\
\text { doesn't converge }
\end{array}\right)
$$

(b) What is $\lim _{n \rightarrow \infty} c_{n}$?

$$
\begin{aligned}
& C_{n}=\sin (n \pi)=0 \\
& \lim _{n \rightarrow \infty} c_{n}=0
\end{aligned}
$$

(c) Does this contradict Theorem 1? Explain.

No $\sin \varphi \lim _{x \rightarrow \infty} f(x)$ doesn't exist.

Activity 4
In this activity we will compute $\lim _{n \rightarrow \infty} a_{n}$, where $\left\{a_{n}\right\}$ is the sequence

$$
1, \sqrt{2}, \sqrt[3]{3}, \sqrt[4]{4}, \ldots
$$

(a) Find a function $f(x)$ such that $f(n)=a_{n}$.

$$
a_{n}=n^{1 / n} \quad f(x)=x^{1 / x}
$$

L'Hopital
(b) Let $g(x)=\ln (f(x))$. Find

$$
\lim _{x \rightarrow \infty} g(x)
$$

$$
g(x)=\frac{1}{x} \ln x
$$

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{\ln x}{x} & =\lim _{x \rightarrow 0} \\
& =0
\end{aligned}
$$

(c) Consider the following argument

We found that $\lim _{x \rightarrow \infty} g(x)=0$. We also know that $g(x)=\ln (f(x))$, and $\ln (x)$ is continuous so therefore we have

$$
0=\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} \ln (f(x))=\ln \left(\lim _{x \rightarrow \infty} f(x)\right)
$$

therefore, since $\ln (1)=0$, by Theorem 2, we can conclude that $\lim _{x \rightarrow \infty} f(x)=1$.
Is this argument correctly applying Theorem 2?
No. Theorem 2 says that if a_{n} converges to L then for a continuous function f. $\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)$. That is not what we are doing in this problem (d) Can you fix the argument in the previous part so that it correctly uses Theorem 2? let $b_{n}=g(n)=\frac{\ln n}{n}$. e^{x} is a continuous function Since $\quad \lim _{n \rightarrow \infty} b_{n}=0 \quad \lim _{n \rightarrow \infty} e^{b_{n}}=e^{0}=1$

$$
e^{b_{n}}=e^{\frac{\ln n}{n}}=e^{\ln (n)^{\ln }}=n^{1 / n} 4 \text { There fore } \quad \lim _{n \rightarrow \infty} n^{1 / n}=1
$$

