NAME:

7 November - 11 November 2022

Geometric Series

MAIN CONCEPTS

• A Geometric Sequence (a.k.a. Geometric Progression) is a sequence of the form $a_n = ar^{n-1}$, where a and r some given numbers (r is often referred to as the ratio). A typical geometric sequence looks like

$$a, ar, ar^2, ar^3, \dots$$

• Examples:

$$a = 1 \ r = \frac{1}{2}$$
: 1, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{8}$, ...

$$a = 3 \ r = 2$$
: 3, 6, 12, 24, ...

$$a = \pi \ r = -\frac{1}{3}$$
: π , $-\frac{\pi}{3}$, $\frac{\pi}{9}$, $-\frac{\pi}{27}$, $\frac{\pi}{81}$, ...

• The n^{th} -Geometric Partial sum is the sum of the first n terms of a geometric sequence. It is denoted by S_n and

$$S_n = a + ar + ar^2 + ar^3 + \dots + ar^{n-1} = \sum_{k=1}^n ar^{k-1}$$

• If we know a and r, and $r \neq 1$ then S_n is given by the formula:

$$S_n = \frac{a(1-r^n)}{1-r}$$

• The **Infinite Geometric Series** is the sum of all infinite terms in a given geometric sequence i.e.

$$S = a + ar + ar^{2} + ar^{3} + \dots = \sum_{k=1}^{\infty} ar^{k-1}$$

• The infinite geometric series only exists (converges) when |r| < 1, otherwise it does not exist (diverges). When it converges (i.e. when |r| < 1), the value of the infinite series is given by

$$S = \frac{a}{1-r}$$

ACTIVITIES

Activity 8.2.2

Let a and r be real numbers (with $r \neq 1$) and let

$$S_n = a + ar + ar^2 + \ldots + ar^{n-1}.$$

In this activity we will find a shortcut formula for S_n that does not involve a sum of n terms.

(a) Multiply S_n by r. What does the resulting sum look like?

(b) Subtract rS_n from S_n and explain why

$$S_n - rS_n = a - ar^n.$$

(c) Solve the equation above for S_n to find a simple formula for S_n that does not involve adding n terms.

ACTIVITY 8.2.3

Let $r \neq 1$ and a be real numbers and let

$$S = a + ar + ar^2 + \ldots + ar^{n-1} + \ldots$$

be an infinite geometric series. For each positive integer n, let

$$S_n = a + ar + ar^2 + \ldots + ar^{n-1}.$$

(a) What should we allow n to approach in order to have S_n approach S?

(b) What is the value of $\lim_{n\to\infty} r^n$ for |r| > 1? for |r| < 1? Explain.

(c) If |r| < 1, use the formula for S_n and your observations in (a) and (b) to explain why S is finite and find a resulting formula for S.