§8.2

Fall MATH 1120 Lec003

NAME: \qquad
7 November - 11 November 2022

Geometric Series

Main Concepts

- A Geometric Sequence (a.k.a. Geometric Progression) is a sequence of the form $a_{n}=a r^{n-1}$, where a and r some given numbers (r is often referred to as the ratio). A typical geometric sequence looks like

$$
a, a r, a r^{2}, a r^{3}, \ldots
$$

- Examples:

$$
\begin{aligned}
& a=1 r=\frac{1}{2}: 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots \\
& a=3 r=2: 3,6,12,24, \ldots \\
& a=\pi r=-\frac{1}{3}: \pi,-\frac{\pi}{3}, \frac{\pi}{9},-\frac{\pi}{27}, \frac{\pi}{81}, \ldots
\end{aligned}
$$

- The $n^{\text {th }}$-Geometric Partial sum is the sum of the first n terms of a geometric sequence. It is denoted by S_{n} and

$$
S_{n}=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}=\sum_{k=1}^{n} a r^{k-1}
$$

- If we know a and r, and $r \neq 1$ then S_{n} is given by the formula:

$$
S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}
$$

- The Infinite Geometric Series is the sum of all infinite terms in a given geometric sequence i.e.

$$
S=a+a r+a r^{2}+a r^{3}+\ldots=\sum_{k=1}^{\infty} a r^{k-1}
$$

- The infinite geometric series only exists (converges) when $|r|<1$, otherwise it does not exist (diverges). When it converges (i.e. when $|r|<1$), the value of the infinite series is given by

$$
S=\frac{a}{1-r}
$$

Activities

Activity 8.2.2
Let a and r be real numbers (with $r \neq 1$) and let

$$
S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}
$$

In this activity we will find a shortcut formula for S_{n} that does not involve a sum of n terms.
(a) Multiply S_{n} by r. What does the resulting sum look like?
(b) Subtract $r S_{n}$ from S_{n} and explain why

$$
S_{n}-r S_{n}=a-a r^{n}
$$

(c) Solve the equation above for S_{n} to find a simple formula for S_{n} that does not involve adding n terms.

Activity 8.2.3

Let $r \neq 1$ and a be real numbers and let

$$
S=a+a r+a r^{2}+\ldots+a r^{n-1}+\ldots
$$

be an infinite geometric series. For each positive integer n, let

$$
S_{n}=a+a r+a r^{2}+\ldots+a r^{n-1}
$$

(a) What should we allow n to approach in order to have S_{n} approach S ?
(b) What is the value of $\lim _{n \rightarrow \infty} r^{n}$ for $|r|>1$? for $|r|<1$? Explain.
(c) If $|r|<1$, use the formula for S_{n} and your observations in (a) and (b) to explain why S is finite and find a resulting formula for S.

