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Fall MATH 1120 Lec003 14 November - 18 November 2022

SERIES OF REAL NUMBERS (CONTD.)

MAIN CONCEPTS

e The Limit Comparison Test: The idea here is to deduce convergence/divergence
of a series by comparing it to a well-understood series.

Let Y oo, ax and > .-, by be series with positive terms. If
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for some positive finite constant ¢, then > ;- ax and Y .- by either both converge or
both diverge.

e The Ratio Test: The idea of this test is check if a given series is ”approximately
geometric”. Since we understand when a geometric series converges/diverges, we may
deduce properties of the given series.

Let ) .-, ax be an infinite series. Suppose
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a. If 0 <r < 1, then the series converges.
b. If r > 1, then the series diverges.

c. If r =1, then the test is inconclusive (it could covnerge or diverge).



ACTIVITIES

AcTIvIiTY 8.3.7

Consider the series Y - fg—i Since the convergence and divergence of a series only depends

on the behavior of the series for large values of k, we might examine the terms of this series
more closely as k gets large.

(a) By computing the value of k’?j? for £ = 100 and k£ = 1000, explain why the terms k’%fé

are essentially % when £ is large.
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(b) Let’s formalize our observations in (a) a bit more. Let aj, = :3—3 and by = . Calculate
. ay
lim —.
koo b

What does the value of the limit tell you about a; and by, for large values of k7 Compare
your response from part (a).
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(¢) Does the series Y37, 2 converge or diverge? Why? What do you think that tells us

about the convergence or divergence of the series Y-, :3—%? Explain.
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AcTIVITY 8.3.8

Use the limit comparison test to determine the convergence or divergence of the series
i 3k*+1
“— 5k* + 2k + 2

by comparing it to the series Y .-, 1%2
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AcTIVITY 8.3.9

Consider the series defined by

D

k=1
This series is not a geometric series, but this activity will illustrate how we might compare
this series to a geometric one. Recall that a series Y -, aj is geometric if the ratio -+ is

always the same. For the series given above, note that ay = 3,3;
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(a) To seeif Y o2, 31@2—; is comparable to a geometric series, we analyse the ratios of suc-
cessive terms in the series. Complete Table 1 listing your calculations to at least 8
decimal places.

k 5 10 20 21 22 23 24 25
Ak+1
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Table 1
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(b) Based on your calculations, what can we say about the ratio a’;—zl if k is large?
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(c) Do you agree or disagree with the statement “the series Y-, % is approximately

geometric when k is large”? If not, why not? If so do you think the series > -, 2

converges or diverges? Explain. Tk
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AcTIvITY 8.3.10

Determine whether each of the following series converges or diverges. Explicitly state which
test you use.
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