Series of Real Numbers (contd.)

Main Concepts

- The Limit Comparison Test: The idea here is to deduce convergence/divergence of a series by comparing it to a well-understood series.
Let $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ be series with positive terms. If

$$
\lim _{k \rightarrow \infty} \frac{b_{k}}{a_{k}}=c
$$

for some positive finite constant c, then $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ either both converge or both diverge.

- The Ratio Test: The idea of this test is check if a given series is "approximately geometric". Since we understand when a geometric series converges/diverges, we may deduce properties of the given series.
Let $\sum_{k=1}^{\infty} a_{k}$ be an infinite series. Suppose

$$
\lim _{k \rightarrow \infty} \frac{\left|a_{k+1}\right|}{\left|a_{k}\right|}=r
$$

a. If $0 \leq r<1$, then the series converges.
b. If $r>1$, then the series diverges.
c. If $r=1$, then the test is inconclusive (it could covnerge or diverge).

Activities

Activity 8.3.7

Consider the series $\sum_{k=1}^{\infty} \frac{k+1}{k^{3}+2}$. Since the convergence and divergence of a series only depends on the behavior of the series for large values of k, we might examine the terms of this series more closely as k gets large.
(a) By computing the value of $\frac{k+1}{k^{3}+2}$ for $k=100$ and $k=1000$, explain why the terms $\frac{k+1}{k^{3}+2}$ are essentially $\frac{k}{k^{3}}$ when k is large.
(b) Let's formalize our observations in (a) a bit more. Let $a_{k}=\frac{k+1}{k^{3}+2}$ and $b_{k}=\frac{k}{k^{3}}$. Calculate

$$
\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}} .
$$

What does the value of the limit tell you about a_{k} and b_{k} for large values of k ? Compare your response from part (a).
(c) Does the series $\sum_{k=1}^{\infty} \frac{k}{k^{3}}$ converge or diverge? Why? What do you think that tells us about the convergence or divergence of the series $\sum_{k=1}^{\infty} \frac{k+1}{k^{3}+2}$? Explain.

Activity 8.3.8
Use the limit comparison test to determine the convergence or divergence of the series

$$
\sum_{k=1}^{\infty} \frac{3 k^{2}+1}{5 k^{4}+2 k+2}
$$

by comparing it to the series $\sum_{k=1}^{\infty} \frac{1}{k^{2}}$.

Activity 8.3.9

Consider the series defined by

$$
\sum_{k=1}^{\infty} \frac{2^{k}}{3^{k}-k}
$$

This series is not a geometric series, but this activity will illustrate how we might compare this series to a geometric one. Recall that a series $\sum_{k=1}^{\infty} a_{k}$ is geometric if the ratio $\frac{a_{k+1}}{a_{k}}$ is always the same. For the series given above, note that $a_{k}=\frac{2^{k}}{3^{k}-k}$.
(a) To see if $\sum_{k=1}^{\infty} \frac{2^{k}}{3^{k}-k}$ is comparable to a geometric series, we analyse the ratios of successive terms in the series. Complete Table 1 listing your calculations to at least 8 decimal places.

k	5	10	20	21	22	23	24	25
$\frac{a_{k+1}}{a_{k}}$								

Table 1
(b) Based on your calculations, what can we say about the ratio $\frac{a_{k+1}}{a_{k}}$ if k is large?
(c) Do you agree or disagree with the statement "the series $\sum_{k=1}^{\infty} \frac{2^{k}}{3^{k}-k}$ is approximately geometric when k is large"? If not, why not? If so do you think the series $\sum_{k=1}^{\infty} \frac{2^{k}}{3^{k}-k}$ converges or diverges? Explain.

Determine whether each of the following series converges or diverges. Explicitly state which test you use.
(a) $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$
(b) $\sum_{k=1}^{\infty} \frac{k^{3}+2}{k^{2}+1}$
(c) $\sum_{k=1}^{\infty} \frac{10^{k}}{k!}$
(d) $\sum_{k=1}^{\infty} \frac{k^{3}-2 k^{2}+1}{k^{6}+4}$

