Name: SOLUTIONS
28 November - 02 December 2022

Taylor Polynomials and Taylor Series

Main Concepts

- Roughly speaking, the Taylor Series of a function at a given point is an infinite series whose terms depend on the derivatives of the function at that point.
- The $n^{\text {th }}$ order Taylor Polynomial of a function f centred at the point a is given by

$$
\begin{aligned}
P_{n}(x) & =f(a)+f^{\prime}(a) \cdot(x-a)+\frac{f^{\prime \prime}(a)}{2!} \cdot(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k} .
\end{aligned}
$$

Here, $f^{(k)}(a)$ denotes the $k^{\text {th }}$ derivative of f at the point a, e.g. $f^{(0)}(a)=f(a)$, $f^{(1)}(a)=f^{\prime}(a), f^{(2)}(a)=f^{\prime \prime}(a)$, and so on.

- Properties of the Taylor Polynomial:
- $P_{n}(x)$ is an $n^{\text {th }}$ degree polynomial,
- $P_{n}(x)$ approximates $f(x)$ near the point $x=a$,
- The taylor polynomial and its derivatives match that of the function at the point $x=a$, i.e., $P_{n}^{(k)}(a)=f^{(k)}(a)$.
- We say a function is infinitely differentiable at a point a if all the derivatives of f exist at the point $x=a$.
- Let f be an infinitely differentiable function. The Taylor series for f centred at $x=a$ is the series $T_{f}(x)$ defined by

$$
T_{f}(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} \cdot(x-a)^{k}
$$

Notice that the Taylor Polynomial, $P_{n}(x)$ is the $n^{\text {th }}$ partial sum of the Taylor series $T_{f}(x)$.

- Examples:
(a) Taylor series of e^{x} at $x=0: 1+x+\frac{x}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots$
(b) Taylor series of $\frac{1}{1-x}$ at $x=0: 1+x+x^{2}+x^{3}+x^{4}+\ldots$
(c) Taylor series of $\ln (x)$ at $x=1:(x-1)-\frac{1}{2}(x-1)^{2}+\frac{1}{3}(x-3)^{3}-\frac{1}{4}(x-4)^{4}+\ldots$

Activities

Activity 8.5.2

We have just seen that the n-th order Taylor polynomial centered at $a=0$ for the exponential function e^{x} is

$$
\sum_{k=0}^{n} \frac{x^{k}}{k!} .
$$

In this activity, we determine small order Taylor polynomials for several other familiar functons, and look for general patterns.
(a) Let $f(x)=\frac{1}{1-x}$.
(i) Calculate the first four derivatives of $f(x)$ at $x=0$. Then find the fourth order Taylor polynomial $P_{4}(x)$ for $\frac{1}{1-x}$ centered at 0 .

(ii) Based on your results from part (i), determine a general formula for $f^{(k)}(0)$.

$$
f^{(k)}(0)=k!
$$

(b) Let $f(x)=\cos (x)$.
(i) Calculate the first four derivatives of $f(x)$ at $x=0$. Then find the fourth order Taylor polynomial $P_{4}(x)$ for 船 centered at 0 。

(ii) Based on your results from part (i), determine a general formula for $f^{(k)}(0)$.

$$
f^{(k)}(0)=\left\{\begin{array}{ll}
0 & k \text { is odd } \\
(-1)^{j} & \text { if } k=2 j
\end{array} \quad \begin{array}{l}
\text { this is another of saying }
\end{array}\right.
$$

(c) Let $f(x)=\sin (x)$.
(i) Calculate the first four derivatives of $f(x)$ at $x=0$. Then find the fourth order Taylor polynomial $P_{4}(x)$ for $\frac{1}{1-x}$ centered at 0 .

k	$f^{(k)}(x)$	$f^{(k)}(0)$	
0	$\sin x$	0	$P_{a}(x)=x-\frac{x^{3}}{3!}$
1	$\cos x$	1	
2	$-\sin x$	0	
3	$-\cos x$	-1	
4	$\sin x$	0	

(ii) Based on your results from part (i), determine a general formula for $f^{(k)}(0)$.

$$
f^{(k)}(0)=\left\{\begin{array}{ll}
0 & k \text { is even } \\
(-1)^{j} & k=2 j+1
\end{array} \quad \begin{array}{l}
\text { another } \\
\text { way of } \\
\text { saying } k
\end{array}\right.
$$

Activity 8.5.3

In the previous activity we determined small order Taylor polynomials for a few familiar functions, and also found general patterns in the derivatives evaluated at 0 . Use that information to write the Taylor series centered at 0 for the following functions.
(a) $f(x)=\frac{1}{1-x}$

$$
\sum_{k=0}^{\infty} x^{k}
$$

(b) $f(x)=\cos (x)$ (you will need to carefully consider how to indicate that many of the coefficients are 0 . Think about a general way to represent an even integer.)

$$
\sum_{j=0}^{\infty}(-1)^{j} \frac{x^{2 j}}{(2 j)!}
$$

(c) $f(x)=\sin (x)$ (you will need to carefully consider how to indicate that many of the coefficients are 0 . Think about a general way to represent an odd integer.)

$$
\sum_{j=0}^{\infty}(-1)^{j} \frac{x^{2 j+1}}{(2 j+1)!}
$$

(d) $f(x)=\frac{1}{1+x}$.

$$
\sum_{k=0}^{\infty}(-1)^{k} x^{k}
$$

Activity 8.5.4

For this activity, it might be useful if you use this Desmos worksheet: https://www.desmos. com/calculator/ttxdm690xm
(a) Plot the graphs of several of the Taylor polynomials centered at 0 (of order at least 5) for e^{x} and convince yourself that these Taylor polynomials converge to e^{x} for every value of x.

in class
using
the
online
app
(b) Draw the graphs of several of the Taylor polynomials centered at 0 (or order at least 6) for $\cos (x)$ and convince yourself that these Taylor polynomials converge to $\cos (x)$ for every value of x. Write the Taylor series centered at 0 for $\cos (x)$.
(c) Draw the graphs of several of the Taylor polynomials centered at 0 for $\frac{1}{1-x}$. Based on your graphs, for what values of x do these Taylor polynomials appear to converge to $\frac{1}{1-x}$? How is this different from what we observe with e^{x} and $\cos (x)$? In addition, write the Taylor series centered at 0 for $\frac{1}{1-x}$.

