TAYLOR POLYNOMIALS AND TAYLOR SERIES

Main Concepts

- Roughly speaking, the **Taylor Series** of a function at a given point is an infinite series whose terms depend on the derivatives of the function at that point.
- The n^{th} order **Taylor Polynomial** of a function f centred at the point a is given by

$$P_n(x) = f(a) + f'(a) \cdot (x - a) + \frac{f''(a)}{2!} \cdot (x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x - a)^n$$
$$= \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x - a)^k.$$

Here, $f^{(k)}(a)$ denotes the k^{th} derivative of f at the point a, e.g. $f^{(0)}(a) = f(a)$, $f^{(1)}(a) = f'(a), f^{(2)}(a) = f''(a), \text{ and so on.}$

- Properties of the Taylor Polynomial:
 - $-P_n(x)$ is an n^{th} degree polynomial,
 - $P_n(x)$ approximates f(x) near the point x = a,
 - The taylor polynomial and its derivatives match that of the function at the point x = a, i.e., $P_n^{(k)}(a) = f^{(k)}(a)$.
- We say a function is **infinitely differentiable** at a point a if all the derivatives of f exist at the point x = a.
- Let f be an infinitely differentiable function. The **Taylor series** for f centred at x = ais the series $T_f(x)$ defined by

$$T_f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} \cdot (x-a)^k$$

Notice that the Taylor Polynomial, $P_n(x)$ is the n^{th} partial sum of the Taylor series $T_f(x)$.

- Examples:
 - (a) Taylor series of e^x at x = 0: $1 + x + \frac{x}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots$
 - (b) Taylor series of $\frac{1}{1-x}$ at x = 0: $1 + x + x^2 + x^3 + x^4 + ...$
 - (c) Taylor series of $\ln(x)$ at x = 1: $(x-1) \frac{1}{2}(x-1)^2 + \frac{1}{3}(x-3)^3 \frac{1}{4}(x-4)^4 + \dots$

ACTIVITIES

ACTIVITY 8.5.2

We have just seen that the *n*-th order Taylor polynomial centered at a=0 for the exponential function e^x is

$$\sum_{k=0}^{n} \frac{x^k}{k!}.$$

In this activity, we determine small order Taylor polynomials for several other familiar functions, and look for general patterns.

(a) Let
$$f(x) = \frac{1}{1-x}$$
.

(i) Calculate the first four derivatives of f(x) at x = 0. Then find the fourth order Taylor polynomial $P_4(x)$ for $\frac{1}{1-x}$ centered at 0.

k	f (12)(x)	$\int_{-\infty}^{\infty} \left(\frac{(k)}{2} \right) \left(\frac{(k)}{2} \right)$	$P_4(x) = 1 + x + \frac{2x^2}{2!}$
0	/(ı-x)	1	$+\frac{6x^3}{24x^4}$
	1/(1-x)2		3! 4!
2	2/(1-x) ³	6	$= + \times + \times^2 + \times^3 + \times^4$
34	$\frac{6/(1-x)^4}{24/(1-x)^5}$	24	

(ii) Based on your results from part (i), determine a general formula for $f^{(k)}(0)$.

2

- (b) Let $f(x) = \cos(x)$.
 - (i) Calculate the first four derivatives of f(x) at x = 0. Then find the fourth order Taylor polynomial $P_4(x)$ for f(x) centered at 0.

k	ન (κ)(χ)	f(n)(0)	$P_{+}(x) = 1 + O(x + (-1))x^{2} + O(x^{3} + (1))x^{4}$
0 1 2 3 4	(OS X - S IN X - LOS X S IN X LOS X	1010-	$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$
1 2 3 4	-cosx sinx	0 1 0	$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$

(ii) Based on your results from part (i), determine a general formula for $f^{(k)}(0)$.

$$f(0) = \begin{cases} 0 & \text{k is odd} \\ (-1)^{i} & \text{if } k=2j \end{cases}$$
 way of saying k is even

- (c) Let $f(x) = \sin(x)$.
 - (i) Calculate the first four derivatives of f(x) at x = 0. Then find the fourth order Taylor polynomial $P_4(x)$ for $\frac{1}{1-x}$ centered at 0.

L 0	einx f(n)(x)	0 f(n)(0)	Pa(x)=	x - x ⁵
ı	cosx	1		
2	-sinx	0		
3	-co \$x	-t		
4	Sin X	0		
	•	I .	I .	

(ii) Based on your results from part (i), determine a general formula for $f^{(k)}(0)$.

$$f^{(k)}(0) = \begin{cases} 0 & k \text{ is even} \\ (-1)^{j} & k = 2j+1 \end{cases} \xrightarrow{\text{amother saying } k}$$
is odd

ACTIVITY 8.5.3

In the previous activity we determined small order Taylor polynomials for a few familiar functions, and also found general patterns in the derivatives evaluated at 0. Use that information to write the Taylor series centered at 0 for the following functions.

(a)
$$f(x) = \frac{1}{1-x}$$

$$\sum_{k=0}^{\infty} x^{k}$$

(b) $f(x) = \cos(x)$ (you will need to carefully consider how to indicate that many of the coefficients are 0. Think about a general way to represent an even integer.)

$$\sum_{j=0}^{\infty} (-1)^{j} \frac{x^{2j}}{(2j)!}$$

(c) $f(x) = \sin(x)$ (you will need to carefully consider how to indicate that many of the coefficients are 0. Think about a general way to represent an odd integer.)

$$\sum_{j=0}^{\infty} (-1)^{j} \frac{x^{2j+1}}{(2j+1)!}$$

(d)
$$f(x) = \frac{1}{1+x}$$
.

$$\sum_{k=0}^{\infty} (-1)^k \times^k$$

ACTIVITY 8.5.4

For this activity, it might be useful if you use this Desmos worksheet: https://www.desmos.com/calculator/ttxdm690xm

(a) Plot the graphs of several of the Taylor polynomials centered at 0 (of order at least 5) for e^x and convince yourself that these Taylor polynomials converge to e^x for every value of x.

We did these in class using the online app

(b) Draw the graphs of several of the Taylor polynomials centered at 0 (or order at least 6) for $\cos(x)$ and convince yourself that these Taylor polynomials converge to $\cos(x)$ for every value of x. Write the Taylor series centered at 0 for $\cos(x)$.

(c) Draw the graphs of several of the Taylor polynomials centered at 0 for $\frac{1}{1-x}$. Based on your graphs, for what values of x do these Taylor polynomials appear to converge to $\frac{1}{1-x}$? How is this different from what we observe with e^x and $\cos(x)$? In addition, write the Taylor series centered at 0 for $\frac{1}{1-x}$.