§8.5 Namve:  SOLUTIONG

Fall MATH 1120 Lec003 28 November - 02 December 2022

TAYLOR POLYNOMIALS AND TAYLOR SERIES (CONTD.)

MAIN CONCEPTS

e Recall that for an infinitely differentiable function f, we can define its Taylor series
centred at a point = = a, T¢(z).

e For each z, the Taylor series is an infinite series of real numbers and it may or may
not converge.

e Consider a Taylor series of the form

ch-(:c—a)k

and denote the limit of the ratio:
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— If L = 0: The series converges on the whole real line (—o0, 00).
— If L = oo: The series converges only at the point z = a.

— If 0 < L < oco: The Taylor series converges absolutely for all x in the interval
(a - %, a-+ %)

e The interval (a — %, a+ %) is called the interval of convergence and % is called the
radius of convergence.

e The Taylor polynomial of a function f centred at a approximates f at points close to
a. The Lagrange error bounds tell us how good this approximation is at some point
¢ that is close to a:

Suppose f is continuous and has n + 1 continuous derivatives. Suppose also that
| f V] () < M on the interval [a,c]. If P,(z) is the n' degree Taylor polynomial of
f centred at a, then



ACTIVITIES
AcTIVITY 8.5.5

(a) Use the Ratio test to explicitly determine the interval of convergence of the Taylor
series for f(z) = = centered at z = 0.
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(b) Use the Ratio test to explicitly determine the interval of convergence of the Taylor
series for f(x) = cos(x) centered at x = 0. ' The twkevva) of
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(c) Use the Ratio test to explicitly determine the interval of convergence of the Taylor
series for f(x) = sin(z) centered at x = 0.
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AcCTIVITY 8.5.6

Let P,(z) be the n-th order Taylor polynomial for sin(x) centered at z = 0. Determine how
large we need to choose n such that P, (2) approximates sin(2) to 20 decimal places.
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AcTIiviTYy 8.5.7 from Livessere

Jest
(a) Show that the Taylor series centered at 0 for cos(z) converges to cos(x) for every real
number x. wal § "
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(b) Next we consider the Taylor series for e”.

(i) Show that the Taylor series centered at 0 for e converges to e® for every nonneg-
ative value of x. ) .
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(ii) Show that the Taylor series centered at 0 for e* converges to e” for every ammneg-

ative value of z.
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(iii) Explain why the Taylor series centered at 0 for e converges to e” for every real
number x. Recall that we earlier showed that the Taylor series centered at 0 for
e” converges for all z, and we have now completed the argument that the Taylor
series for e” actually converges to e” for all x.
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(c) Let P,(x) be the n-th order Taylor polynomial for e” centered at 0. Find a value of n
such that P,(5) approximates e° correct to 8 decimal places.
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