Taylor Polynomials and Taylor Series (contd.)

Main Concepts

- \bullet Recall that for an infinitely differentiable function f, we can define its Taylor series centred at a point x = a, $T_f(x)$.
- For each x, the Taylor series is an infinite series of real numbers and it may or may not converge.
- Consider a Taylor series of the form

$$\sum_{k=0}^{\infty} c_k \cdot (x-a)^k$$

and denote the limit of the ratio:

$$\lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|} = L.$$

- If L=0: The series converges on the whole real line $(-\infty,\infty)$.
- If $L = \infty$: The series converges only at the point x = a.
- If $0 < L < \infty$: The Taylor series converges absolutely for all x in the interval $\left(a-\frac{1}{r},a+\frac{1}{r}\right).$
- The interval $\left(a-\frac{1}{L},a+\frac{1}{L}\right)$ is called the **interval of convergence** and $\frac{1}{L}$ is called the radius of convergence.
- The Taylor polynomial of a function f centred at a approximates f at points close to a. The Lagrange error bounds tell us how good this approximation is at some point c that is close to a:

Suppose f is continuous and has n+1 continuous derivatives. Suppose also that $|f^{(n+1)}|(x) \leq M$ on the interval [a,c]. If $P_n(x)$ is the n^{th} degree Taylor polynomial of f centred at a, then

$$|P_n(c) - f(c)| \le M \frac{|c - a|^{n+1}}{(n+1)!}.$$

ACTIVITIES

ACTIVITY 8.5.5

(a) Use the Ratio test to explicitly determine the interval of convergence of the Taylor series for $f(x) = \frac{1}{1-x}$ centered at x = 0.

Tf(x) =
$$\sum_{k=0}^{\infty} x^k$$
 $C_k = 1$ $\lim_{k \to \infty} \frac{|C_{k+1}|}{|C_{k}|} = \lim_{k \to \infty} \frac{1}{|C_{k+1}|}$ = $\lim_{k \to \infty} \frac{1}{|C_{k+1}|} = \lim_{k \to \infty} \frac{1}{|C_{k+1}|}$ interval of convergence! $(0-1,0+1) = (-1,1)$

(b) Use the Ratio test to explicitly determine the interval of convergence of the Taylor series for $f(x) = \cos(x)$ centered at x = 0.

series for
$$f(x) = \cos(x)$$
 centered at $x = 0$.

The interval of convergence is $(-i)^{\frac{1}{2}}$ $(-i)^{\frac{1}{$

(c) Use the Ratio test to explicitly determine the interval of convergence of the Taylor series for $f(x) = \sin(x)$ centered at x = 0.

Same idea as (b), Interval of convergence is
$$(-\infty, \infty)$$

ACTIVITY 8.5.6

Let $P_n(x)$ be the *n*-th order Taylor polynomial for $\sin(x)$ centered at x=0. Determine how large we need to choose n such that $P_n(2)$ approximates $\sin(2)$ to 20 decimal places.

Since
$$\sin x$$
 & $\cos x$ are bounded by 1, we can take $M=1$. Using Lagrange's error bound, we have $\left|P_n(z)-\sin(z)\right| \leq M \frac{|z-0|^{n+1}}{(n+1)!} = \frac{2^{n+1}}{(n+1)!}$. We want the error to be smaller than 10^{20} i.e. $\frac{2^{n+1}}{(n+1)!} \leq 10^{20}$. Solving for n , we get $n \geq 27$.

ACTIVITY 8.5.7

- (a) Show that the Taylor series centered at 0 for cos(x) converges to cos(x) for every real

Using the Lagrange formule, $|P_n(x)-\cos x| \leq \frac{|x|^{n+1}}{(n+1)!}$. We know that $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ converges for all x, therefore $\lim_{n\to\infty} \frac{x^n}{n!} = 0$

 $n \rightarrow \omega$ $|P_n(x) - \cos x| \longrightarrow 0$. there fore

- (b) Next we consider the Taylor series for e^x .
 - (i) Show that the Taylor series centered at 0 for e^x converges to e^x for every nonnegative value of x.

Since e^x is an increasing, on [0,c], $e^x \leq e^c$. We take $M=e^c$. Then the Lagrange formula says that $|P_n(x)-e^x| \leq e^c \frac{|x|^{n+1}}{(n+r)!}$ and as $n\to\infty$ the right hand side goes to zero.

(ii) Show that the Taylor series centered at 0 for e^x converges to e^x for every respectively. ative value of x.

For negative x, $e^x \le 1$. So M=1, and apply the same idea from (ii)

(iii) Explain why the Taylor series centered at 0 for e^x converges to e^x for every real number x. Recall that we earlier showed that the Taylor series centered at 0 for e^x converges for all x, and we have now completed the argument that the Taylor series for e^x actually converges to e^x for all x.

The Taylor scries converges for every $x \ge 0$ from (i) & for $x \ne 0$ from (ii). So it converges for all x.

(c) Let $P_n(x)$ be the *n*-th order Taylor polynomial for e^x centered at 0. Find a value of nsuch that $P_n(5)$ approximates e^5 correct to 8 decimal places.

 $|P_n(s) - e^s| \le \frac{e^s}{(n+1)!} \le 10^{-8}$ M= e5 solving gives n = 28.