NAME:

28 November - 02 December 2022

TAYLOR POLYNOMIALS AND TAYLOR SERIES (CONTD.)

MAIN CONCEPTS

- Recall that for an infinitely differentiable function f, we can define its Taylor series centred at a point x = a, $T_f(x)$.
- For each x, the Taylor series is an infinite series of real numbers and it may or may not converge.
- Consider a Taylor series of the form

$$\sum_{k=0}^{\infty} c_k \cdot (x-a)^k$$

and denote the limit of the ratio:

$$\lim_{k \to \infty} \frac{|c_{k+1}|}{|c_k|} = L.$$

- If L = 0: The series converges on the whole real line $(-\infty, \infty)$.
- If $L = \infty$: The series converges only at the point x = a.
- If $0 < L < \infty$: The Taylor series converges absolutely for all x in the interval $\left(a \frac{1}{L}, a + \frac{1}{L}\right)$.
- The interval $\left(a \frac{1}{L}, a + \frac{1}{L}\right)$ is called the **interval of convergence** and $\frac{1}{L}$ is called the **radius of convergence**.
- The Taylor polynomial of a function f centred at a approximates f at points close to a. The **Lagrange error bounds** tell us how good this approximation is at some point c that is close to a:

Suppose f is continuous and has n + 1 continuous derivatives. Suppose also that $|f^{(n+1)}|(x) \leq M$ on the interval [a, c]. If $P_n(x)$ is the n^{th} degree Taylor polynomial of f centred at a, then

$$|P_n(c) - f(c)| \le M \frac{|c-a|^{n+1}}{(n+1)!}.$$

ACTIVITIES

ACTIVITY 8.5.5

(a) Use the Ratio test to explicitly determine the interval of convergence of the Taylor series for $f(x) = \frac{1}{1-x}$ centered at x = 0.

(b) Use the Ratio test to explicitly determine the interval of convergence of the Taylor series for $f(x) = \cos(x)$ centered at x = 0.

(c) Use the Ratio test to explicitly determine the interval of convergence of the Taylor series for $f(x) = \sin(x)$ centered at x = 0.

ACTIVITY 8.5.6

Let $P_n(x)$ be the *n*-th order Taylor polynomial for sin(x) centered at x = 0. Determine how large we need to choose *n* such that $P_n(2)$ approximates sin(2) to 20 decimal places.

ACTIVITY 8.5.7

(a) Show that the Taylor series centered at 0 for cos(x) converges to cos(x) for every real number x.

- (b) Next we consider the Taylor series for e^x .
 - (i) Show that the Taylor series centered at 0 for e^x converges to e^x for every nonnegative value of x.

(ii) Show that the Taylor series centered at 0 for e^x converges to e^x for every nonnegative value of x.

(iii) Explain why the Taylor series centered at 0 for e^x converges to e^x for every real number x. Recall that we earlier showed that the Taylor series centered at 0 for e^x converges for all x, and we have now completed the argument that the Taylor series for e^x actually converges to e^x for all x.

(c) Let $P_n(x)$ be the *n*-th order Taylor polynomial for e^x centered at 0. Find a value of *n* such that $P_n(5)$ approximates e^5 correct to 8 decimal places.