\qquad

1 Review

1.1 Vectors in Two and Three-Dimensional Space

- Basic vector operations: addition and scalar multiplication.
- Standard bases: The unit vectors $\mathbf{i}=(1,0,0), \mathbf{j}=(0,1,0), \mathbf{k}=(0,0,1)$ correspond to the standard basis vectors for the x-, y-, and z-axes, respectively.
- Parametric equation of a line through the point a (based at the origin) in the direction of $\mathbf{v}($ based at $\mathbf{a})$ is $l(t)=\mathbf{a}+t \mathbf{v}$.

1.2 The Inner Product, Length, and Distance

- The inner product (or dot product) of the vectors $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is defined as

$$
\begin{aligned}
\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{a} \cdot \mathbf{b} & =a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3} \\
& =\|\mathbf{a}\|\|\mathbf{b}\| \cos \theta
\end{aligned}
$$

where $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$ is the length or norm of \mathbf{a} and θ is the angle between the vectors \mathbf{a} and \mathbf{b}.

- The orthogonal projection of \mathbf{v} onto $\mathbf{a}(\neq 0)$ is

$$
\mathbf{p}=\frac{\mathbf{a} \cdot \mathbf{v}}{\|\mathbf{a}\|^{2}} \mathbf{a}
$$

1.3 Matrices, Determinants, and the Cross Product

- The cross product of the vectors $\mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ is defined as

$$
\mathbf{a} \times \mathbf{b}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3}
\end{array}\right|
$$

and the length of $\mathbf{a} \times \mathbf{b}$ is $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$, where θ is the angle with $0 \leq \theta \leq \pi$ between \mathbf{a} and \mathbf{b}.

- The equation of a plane through the points $\left(x_{0}, y_{0}, z_{0}\right)$ and normal to the vector $\mathbf{n}=(A, B, C)$ is $A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$.

Practice Problems

1. Find the distance from $(2,8,-1)$ to the line that passes through $(1,1,1)$ in the direction of the vector $(1 / \sqrt{3}) \mathbf{i}+(1 / \sqrt{3}) \mathbf{j}+(1 / \sqrt{3}) \mathbf{k}$.
2. Sketch and compute the volume of the parallelepiped spanned by:

$$
\mathbf{u}=\langle 2,2,1\rangle, \quad \mathbf{v}=\langle 1,0,3\rangle, \quad \mathbf{w}=\langle 0,-4,0\rangle
$$

3. Which of the following is a parametrization of the line through $P=(4,9,8)$ perpendicular to the $x z$-plane (Figure 1)?
(a) $\vec{r}(t)=\langle 4,9,8\rangle+t\langle 1,0,1\rangle$
(b) $\vec{r}(t)=\langle 4,9,8\rangle+t\langle 0,0,1\rangle$
(c) $\vec{r}(t)=\langle 4,9,8\rangle+t\langle 0,1,0\rangle$
(d) $\vec{r}(t)=\langle 4,9,8\rangle+t\langle 1,1,0\rangle$

Figure 1: Question 3.
4. In this exercise we will prove the Cauchy-Schwarz inequality: If \vec{v} and \vec{w} are any two vectors, then

$$
|\vec{v} \cdot \vec{w}| \leq\|\vec{v}\|\|\vec{w}\|
$$

(a) Let $f(x)=\|x \vec{v}+\vec{w}\|^{2}$ for a scalar x. Show that $f(x)=a x^{2}+b x+c$, where $a=\|\vec{v}\|^{2}, b=2 \vec{v} \cdot \vec{w}$ and $c=\|\vec{w}\|^{2}$.
(b) Conclude that $b^{2}-4 a c \leq 0$. Hint: Does the quadratic polynomial have any real roots?
5. Find the equation of the plane containing the three points $P=(3,0,3), Q=(4,3,2)$ and $R=(1,1,2)$. Find the point of its intersection with the line $\mathbf{r}(t)=\left\langle-1+\frac{3}{2} t, 1,-t\right\rangle$.

