1 Differentiation of Multivariate functions

1. Given a function $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$, where U is open, we define the partial derivative of f with respect to x as:

$$
f_{x}=\frac{\partial f}{\partial x}(x, y, z)=\lim _{h \rightarrow 0} \frac{f(x+h, y, z)-f(x, y, z)}{h}
$$

if it exists. The partial derivatives f_{y} and f_{z} are defined similarly.
2. The linear approximation to $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ is

$$
\ell_{\left(x_{0}, y_{0}\right)}(x, y)=f\left(x_{0}, y_{0}\right)+\left[\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)\right]\left(x-x_{0}\right)+\left[\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right]\left(y-y_{0}\right) .
$$

3. If f is differentiable at $\left(x_{0}, y_{0}\right)$, the tangent plane to the graph of f at $\left(x_{0}, y_{0}, z_{0}\right)$, where $z_{0}=f\left(x_{0}, y_{0}\right)$ is

$$
z=\ell_{\left(x_{0}, y_{0}\right)}(x, y)
$$

4. More generally, for functions $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, we define the $m \times n$ derivative matrix (also referred to as the Jacobian):

$$
\mathrm{D} f\left(\mathbf{x}_{\mathbf{0}}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right)
$$

where all the partial derivatives are evaluated at \mathbf{x}_{0}.
5. We say that a function is differentiable at \mathbf{x}_{0} if all the partials exist and

$$
\lim _{\mathbf{x} \rightarrow \mathbf{x}_{0}} \frac{\left\|f(\mathbf{x})-f\left(\mathbf{x}_{0}\right)-\mathrm{D} f\left(\mathbf{x}_{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)\right\|}{\left\|\mathbf{x}-\mathbf{x}_{0}\right\|}=0
$$

6. Given a function $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$, its gradient is

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k} .
$$

It is straightforward to extend this concept to higher dimensions.

2 Practice Problems

1. Compute f_{x}, f_{y} and f_{z} for the following functions:
(a) $f(x, y, z)=x^{2}-y^{2}+2 z^{2}$
(b) $f(x, y, z)=\log \left(x^{2}+2 y^{2}-3 z^{2}\right)$
(c) $f(x, y, z)=x^{y^{z}}$
2. Find the equation of the plane tangent to the graph of

$$
f(x, y)=\frac{x^{2}+y^{2}}{x y}
$$

at $\left(x_{0}, y_{0}\right)=(1,2)$.
3. Let $v(r, t)=t^{n} \mathrm{e}^{-r^{2} /(4 t)}$. Find a value of the constant n such that v satisfies the following equation,

$$
\frac{\partial v}{\partial t}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial v}{\partial r}\right)
$$

(An equation like the above is referred to as a partial differential equation or PDE.)
4. Find a parametrisation of the ellipse $\left(\frac{x}{2}\right)^{2}+\left(\frac{y}{3}\right)^{2}=1$ in terms of sines and cosines. How does the parametrisation change when the ellipse is translated to have its centre at $(9,-4,0)$?

