1 Properties of the Derivative

1. The Chain rule states that

$$
\mathrm{D}(f \circ g)\left(\mathbf{x}_{0}\right)=\mathrm{D} f\left(g\left(\mathbf{x}_{0}\right)\right) \mathrm{D} g\left(\mathbf{x}_{0}\right),
$$

where $g: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $f: V \subset \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$ are differentiable functions and $g(U) \subset V$, so that composition is well defined.
2. Special cases of the chain rule:

- Along a path $\langle x(t), y(t), z(t)\rangle$ parametrized by $t \in \mathbb{R}$, the derivative of the composition $h(t)=f(x(t), y(t), z(t))$ is given by

$$
\frac{\mathrm{d} h}{\mathrm{~d} t}=\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\frac{\partial f}{\partial z} \frac{\mathrm{~d} z}{\mathrm{~d} t}
$$

- If f is a function of u, v, w which are in turn functions of x, y, z i.e. if we define the composition as

$$
h(x, y, z):=f(u(x, y, z), v(x, y, z), w(x, y, z)),
$$

then the partial derivatives of h are given by

$$
\frac{\partial h}{\partial t}=\frac{\partial f}{\partial u} \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}+\frac{\partial f}{\partial w} \frac{\partial w}{\partial x}
$$

2 Practice Problems

1. Suppose $g(u)$ is a differentiable function and let $f(x, y)=g\left(x^{2}+y^{2}\right)$. If $u=x^{2}+y^{2}$, show that

$$
\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}=4 u\left(\frac{\mathrm{~d} g}{\mathrm{~d} u}\right)^{2}
$$

2. A fighter plane, which can shoot a laser beam straight ahead, travels along the path $\vec{r}(t)=\left\langle t-t^{3}, 12-t^{2}, 3-t\right\rangle$. Show that the pilot cannot hit any target on the x-axis.
3. Use sine and cosine to parametrize the intersection of the surfaces $x^{2}+y^{2}=1$ and $z=4 x^{2}$ (Refer Figure 1).

Figure 1:
4. Verify the chain rule for $f(u, v)=u v$ where

$$
u(x, y)=x^{2}-y^{2} \quad v(x, y)=x^{2}+y^{2}
$$

5. Suppose a duck is swimming in the circle $x=\cos t, y=\sin (t)$, while the temperature $T=x^{2} \mathrm{e}^{y}-x y^{3}$. Find $\mathrm{d} T / \mathrm{d} t:$
(a) by the Chain Rule
(b) by expressing T in terms of t and differentiating.
