§2.6, 3.1
Spring MATH 2220
TA: Gokul Nair

Name: \qquad
12 February 2020

1 Gradients and Directional Derivatives

1. Given a function $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$, its gradient is

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k} .
$$

2. The directional derivative of f in the direction of a unit vector \mathbf{v} at the point \mathbf{x} is

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t} f(\mathbf{x}+t \mathbf{v})\right|_{t=0}=\nabla f(\mathbf{x}) \cdot \mathbf{v}
$$

3. The direction \mathbf{v} in which f is increasing the fastest at \mathbf{x} is the direction parallel to $\nabla f(x)$. The direction of fastest decrease is parallel to $-\nabla f(x)$.
4. For $f: U \subset \mathbb{R}^{3} \rightarrow \mathbb{R}$ a C^{1} function, with $\nabla f\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$, the vector $\nabla f\left(x_{0}, y_{0}, z_{0}\right)$ is perpendicular to the level set $f(x, y, z)=f\left(x_{0}, y_{0}, z_{0}\right)$. Thus the tangent plane to this level set is

$$
\nabla f\left(x_{0}, y_{0}, z_{0}\right) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

2 Higher-Order Derivatives

1. Equality of mixed partial derivatives: If $f(x, y)$ is C^{2} (has continuous 2nd partial derivatives) then

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

This is sometimes referred to as the Clairaut-Schwarz theorem.

3 Practice Problems

1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{1} function in two variables. Define the function $F(x, y, z)=$ $z-f(x, y)$ (clearly $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a C^{1} function in three variables). Find a formula for the tangent plane to the level set $F(x, y, z)=0$. Does this formula seem similar to you?
2. Find a vector $\mathbf{v}(x, y, z)$ normal to the surface

$$
z=\sqrt{x^{2}+y^{2}}+\left(x^{2}+y^{2}\right)^{3 / 2}
$$

at a general point $(x, y, z) \neq(0,0,0)$.

Find the cosine of the angle between $\mathbf{v}(x, y, z)$ and the z-axis and determine the limit of $\cos \theta$ as $(x, y, z) \rightarrow(0,0,0)$.
3. Compute $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ for $u=\cos \left(x y^{2}\right)$ and verify that they are equal.
4. Let $w=f(x, y)$ be a function of two variables and let

$$
x=u+v \quad, \quad y=u-v .
$$

Show that

$$
\frac{\partial^{2} w}{\partial u \partial v}=\frac{\partial^{2} w}{\partial x^{2}}-\frac{\partial^{2} w}{\partial y^{2}}
$$

5. The two equations $\mathrm{e}^{u} \cos v=x$ and $\mathrm{e}^{u} \sin v=y$ define u and v as functions of x and y say $u=U(x, y)$ and $v=V(x, y)$. Find explicit formulae for U and V. Show that $\nabla U(x, y)$ and $\nabla V(x, y)$ are perpendicular at each point (x, y).
6. Find a constant c such that at any point of intersection of the two spheres

$$
(x-c)^{2}+y^{2}+z^{2}=3 \quad \text { and } \quad x^{2}+(y-1)^{2}+z^{2}=1
$$

will be perpendicular to each other.

