NAME:

19 February 2020

1 EXTREMA OF REAL VALUED FUNCTIONS

- 1. A local minimum point of $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is a point $\mathbf{x}_0 \in U$ such that $f(\mathbf{x}_0) \leq f(\mathbf{x})$ for all \mathbf{x} in some neighbourhood of \mathbf{x}_0 . The value of f at that point, $f(\mathbf{x}_0)$ is called the *local minimum value*. By replacing ' \leq ' in the above definition by ' \geq ' we get the definition of *local maximum point* and *value*.
- 2. The First Derivative Test: If f is differentiable in an open set U and $\mathbf{x} \in U$ is a local extremum, then \mathbf{x}_0 is a *critical point* i.e.

$$\frac{\partial f}{\partial x_1}(\mathbf{x}_0) = \dots = \frac{\partial f}{\partial x_n}(\mathbf{x}_0) = 0.$$

2 The Implicit Function Theorem

- 1. One variable version: If $f : (a, b) \to \mathbb{R}$ is C^1 and if $f'(x_0) \neq 0$, then locally near x_0 , f has an inverse function $x = f^{-1}(y)$. Moreover f^{-1} is C^1 . We think of x as the known/independent variable and y as the unknown/dependent variable.
- 2. Special *n*-variable Version: If $F : \mathbb{R}^{n+1} \to \mathbb{R}$ is C^1 and at a point $(\mathbf{x}_0, z_0) \in \mathbb{R}^{n+1}$, $F(\mathbf{x}_0, z_0) = 0$ and $\frac{\partial F}{\partial z}(\mathbf{x}_0, z_0) \neq 0$, then locally near (\mathbf{x}_0, z_0) there is a unique solution $z = g(\mathbf{x})$ of the equation $F(\mathbf{x}, z) = 0$. We say that $F(\mathbf{x}, z) = 0$ implicitly defines zas a function of $\mathbf{x} = (x_1, ..., x_n)$. Moreover g is C^1 . Here, we think of $x_1, ..., x_n$ as the known/independent variables and z as the unknown/dependent variable.
- 3. The partial derivatives are computed by implicit differentiation:

$$\frac{\partial F}{\partial x_i} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x_i} = 0,$$

and so

$$\frac{\partial z}{\partial x_i} = -\frac{\partial F/\partial x_i}{\partial F/\partial z}.$$

- 4. In other words, if $\nabla g(\mathbf{x}_0) \neq 0$, then the level set g = c is a smooth surface near \mathbf{x}_0 .
- 5. The General version of the Implicit function theorem deals with functions $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$. Component-wise we may write the following:

for *m* unknown variables $\mathbf{z} = (z_1, ..., z_m)$. The theorem states that if the Jacobian of the function in the unknown variable at (\mathbf{x}_0, z_0) is non-zero, viz.,

$$J_{z}(f)(\mathbf{x}_{0}, \mathbf{z}_{0}) = \begin{vmatrix} \frac{\partial F_{1}}{\partial z_{1}} & \cdots & \frac{\partial F_{1}}{\partial z_{m}} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_{m}}{\partial z_{1}} & \cdots & \frac{\partial F_{m}}{\partial z_{m}} \end{vmatrix} \neq 0$$

then these equations locally define $(z_1, ..., z_m)$ as functions of $(x_1, ..., x_n)$.

6. Inverse function theorem: If $f : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1 mapping, then the condition for inverting the function near a given point \mathbf{x}_0 , $\mathbf{y}_0 = f(\mathbf{x}_0)$ is

$$J_x(f)(\mathbf{x}_0) = \begin{vmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial z_n} \end{vmatrix} \neq 0.$$

7. When we say a statement is **locally** true near a point it means that we can find an **open set** around that point where the statement is true.

3 PRACTICE PROBLEMS

- 1. Discuss the solvability of the following systems:
 - (a)

$$3x + 2y + z2 + u + v2 = 0$$

$$4x + 3y + u2 + v + w + 2 = 0$$

$$x + z + w + u2 + 2 = 0$$

for u, v, w in terms of x, y, z near x = y = z = 0, u = v = 0 and w = -2. (b)

$$u(x, y, z) = x + xyz$$

$$v(x, y, z) = y + xy$$

$$w(x, y, z) = z + 2x + 3z^{2}$$

for x, y, z in terms of u, v, w near (x, y, z) = (0, 0, 0).

2. Let u be defined as a function of x and y by means of the equation

$$u = F(x + u, yu).$$

Find $\partial u/\partial x$ and $\partial u/\partial y$ in terms of the partial derivatives of F (in some region where u is implicitly defined).

3. Where does solvability of z fail for this equation:

$$\sin(x+y) + \sin(y+z) = 1.$$

Suppose we can solve for z as z = f(x, y) in some open set. Compute the derivative $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ in terms of x, y, z. Also try to compute $\frac{\partial^2 f}{\partial x \partial y}$.