1 Extrema of Real Valued functions

1. A local minimum point of $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a point $\mathbf{x}_{0} \in U$ such that $f\left(\mathbf{x}_{0}\right) \leq f(\mathbf{x})$ for all \mathbf{x} in some neighbourhood of \mathbf{x}_{0}. The value of f at that point, $f\left(\mathbf{x}_{0}\right)$ is called the local minimum value. By replacing ' \leq ' in the above definition by ' \geq ' we get the definition of local maximum point and value.
2. The First Derivative Test: If f is differentiable in an open set U and $\mathbf{x} \in U$ is a local extremum, then \mathbf{x}_{0} is a critical point i.e.

$$
\frac{\partial f}{\partial x_{1}}\left(\mathbf{x}_{0}\right)=\ldots=\frac{\partial f}{\partial x_{n}}\left(\mathbf{x}_{0}\right)=0
$$

2 The Implicit Function Theorem

1. One variable version: If $f:(a, b) \rightarrow \mathbb{R}$ is C^{1} and if $f^{\prime}\left(x_{0}\right) \neq 0$, then locally near x_{0}, f has an inverse function $x=f^{-1}(y)$. Moreover f^{-1} is C^{1}. We think of x as the known/independent variable and y as the unknown/dependent variable.
2. Special n-variable Version: If $F: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ is C^{1} and at a point $\left(\mathbf{x}_{0}, z_{0}\right) \in \mathbb{R}^{n+1}$, $F\left(\mathbf{x}_{0}, z_{0}\right)=0$ and $\frac{\partial F}{\partial z}\left(\mathbf{x}_{0}, z_{0}\right) \neq 0$, then locally near $\left(\mathbf{x}_{0}, z_{0}\right)$ there is a unique solution $z=g(\mathbf{x})$ of the equation $F(\mathbf{x}, z)=0$. We say that $F(\mathbf{x}, z)=0$ implicitly defines z as a function of $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$. Moreover g is C^{1}. Here, we think of x_{1}, \ldots, x_{n} as the known/independent variables and z as the unknown/dependent variable.
3. The partial derivatives are computed by implicit differentiation:

$$
\frac{\partial F}{\partial x_{i}}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x_{i}}=0
$$

and so

$$
\frac{\partial z}{\partial x_{i}}=-\frac{\partial F / \partial x_{i}}{\partial F / \partial z}
$$

4. In other words, if $\nabla g\left(\mathbf{x}_{0}\right) \neq 0$, then the level set $g=c$ is a smooth surface near \mathbf{x}_{0}.
5. The General version of the Implicit function theorem deals with functions $F: \mathbb{R}^{n+m} \rightarrow$ \mathbb{R}^{m}. Component-wise we may write the following:

$$
\begin{gathered}
F_{1}\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{m}\right)=0 \\
\vdots \\
F_{m}\left(x_{1}, \ldots, x_{n}, z_{1}, \ldots, z_{m}\right)=0
\end{gathered}
$$

for m unknown variables $\mathbf{z}=\left(z_{1}, \ldots, z_{m}\right)$. The theorem states that if the Jacobian of the function in the unknown variable at $\left(\mathrm{x}_{0}, z_{0}\right)$ is non-zero, viz.,

$$
J_{z}(f)\left(\mathbf{x}_{0}, \mathbf{z}_{0}\right)=\left|\begin{array}{ccc}
\frac{\partial F_{1}}{\partial z_{1}} & \cdots & \frac{\partial F_{1}}{\partial z_{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{m}}{\partial z_{1}} & \cdots & \frac{\partial F_{m}}{\partial z_{m}}
\end{array}\right| \neq 0
$$

then these equations locally define $\left(z_{1}, \ldots, z_{m}\right)$ as functions of $\left(x_{1}, \ldots, x_{n}\right)$.
6. Inverse function theorem: If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a C^{1} mapping, then the condition for inverting the function near a given point $\mathbf{x}_{0}, \mathbf{y}_{0}=f\left(\mathbf{x}_{0}\right)$ is

$$
J_{x}(f)\left(\mathbf{x}_{0}\right)=\left|\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \cdots & \frac{\partial f_{n}}{\partial z_{n}}
\end{array}\right| \neq 0
$$

7. When we say a statement is locally true near a point it means that we can find an open set around that point where the statement is true.

3 Practice Problems

1. Discuss the solvability of the following systems:
(a)

$$
\begin{aligned}
3 x+2 y+z^{2}+u+v^{2} & =0 \\
4 x+3 y+u^{2}+v+w+2 & =0 \\
x+z+w+u^{2}+2 & =0
\end{aligned}
$$

for u, v, w in terms of x, y, z near $x=y=z=0, u=v=0$ and $w=-2$.
(b)

$$
\begin{gathered}
u(x, y, z)=x+x y z \\
v(x, y, z)=y+x y \\
w(x, y, z)=z+2 x+3 z^{2}
\end{gathered}
$$

for x, y, z in terms of u, v, w near $(x, y, z)=(0,0,0)$.
2. Let u be defined as a function of x and y by means of the equation

$$
u=F(x+u, y u) .
$$

Find $\partial u / \partial x$ and $\partial u / \partial y$ in terms of the partial derivatives of F (in some region where u is implicitly defined).
3. Where does solvability of z fail for this equation:

$$
\sin (x+y)+\sin (y+z)=1
$$

Suppose we can solve for z as $z=f(x, y)$ in some open set. Compute the derivative $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ in terms of x, y, z. Also try to compute $\frac{\partial^{2} f}{\partial x \partial y}$.

