1 Double Integrals Over More General Regions

1. Elementary Regions: A y-simple region is one that lies between two continuous curves $y=\phi_{1}(x)$ and $y=\phi_{2}(x)$ where $\phi_{1}(x) \leq \phi_{2}(x)$ and $a \leq x \leq b$. Similarly an x-simple region is one that lies between two continuous curves $x=\psi_{1}(y)$ and $x=\psi_{2}(y)$ where $\psi_{1}(y) \leq \psi_{2}(y)$ and $c \leq y \leq d$. An elementary region is one that is either y-simple or is x-simple. If it is both, we say the region is simple.
2. The integral of a function f over an elementary region D is obtained by extending f to f^{*} a function on the a rectangle R that contains D, the function defined to be

$$
f^{*}(x, y)= \begin{cases}f(x, y) & (x, y) \in D \\ 0 & (x, y) \notin D \text { and }(x, y) \in R\end{cases}
$$

and the integral is defined to by

$$
\iint_{D} f \mathrm{~d} A=\iint_{R} f^{*} \mathrm{~d} A
$$

3. For a y-simple region:

$$
\iint_{D} f \mathrm{~d} A=\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) \mathrm{d} y \mathrm{~d} x
$$

and for an x-simple region:

$$
\iint_{D} f \mathrm{~d} A=\int_{c}^{d} \int_{\psi_{1}(x)}^{\psi_{2}(x)} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

4. If D is a simple region and if f is integrable on D then,

$$
\int_{a}^{b} \int_{\phi_{1}(x)}^{\phi_{2}(x)} f(x, y) \mathrm{d} y \mathrm{~d} x=\int_{c}^{d} \int_{\psi_{1}(y)}^{\psi_{2}(y)} f(x, y) \mathrm{d} x \mathrm{~d} y
$$

5. $m \leq f(x, y) \leq M$ on an elementary region D, then the mean value inequality holds:

$$
m \operatorname{Area}(D) \leq \iint_{D} f \mathrm{~d} A \leq M \operatorname{Area}(D)
$$

6. If f is continuous and D is an elementary region then the mean value equality holds

$$
\iint_{D} f(x, y) \mathrm{d} A=f\left(x_{0}, y_{0}\right) \operatorname{Area}(D)
$$

for some point $\left(x_{0}, y_{0}\right) \in D$.

2 Practice Problems

1. Sketch the region and change the order of integration:
(a) $\int_{1}^{e} \int_{0}^{\log x} f(x, y) \mathrm{d} y \mathrm{~d} x$
(b) $\int_{0}^{\pi} \int_{-\sin (x / 2)}^{\sin (x)} f(x, y) \mathrm{d} y \mathrm{~d} x$
2. Evaluate the integral:

$$
\int_{0}^{1} \int_{y}^{1} \sin \left(x^{2}\right) \mathrm{d} x \mathrm{~d} y
$$

3. Derive the formula:

$$
\int_{0}^{a} \int_{0}^{y} \mathrm{e}^{m(a-x)} f(x) \mathrm{d} x \mathrm{~d} y=\int_{0}^{a}(a-x) \mathrm{e}^{m(a-x)} \mathrm{d} x
$$

4. When a double integral was set up for the volume of the solid under the paraboloid $z=x^{2}+y^{2}$ and above a region S of the $x y$-plane, the following sum of iterated integrals was obtained:

$$
V=\int_{0}^{1} \int_{0}^{y}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y+\int_{1}^{2} \int_{0}^{2-y}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y .
$$

Sketch the region of integration on the $x y$-plane and write the iterated integral with the order reversed. Also compute the integral.
5. If $f(x, y)=\mathrm{e}^{\sin (x+y)}$ and $D=[-\pi, \pi] \times[-\pi, \pi]$, show that

$$
\frac{1}{e} \leq \frac{1}{4 \pi^{2}} \iint_{D} f(x, y) \mathrm{d} A \leq e
$$

