§5.5, 1.4, 6.1*
Spring MATH 2220
TA: Gokul Nair

NAME: \qquad
11 March 2020

1 Triple integrals

1. If f is an integrable function defined on a box $B=[a, b] \times[c, d] \times[p, q] \subset \mathbb{R}^{3}$, the triple integral can be calculated as:

$$
\iiint_{B} f \mathrm{~d} V=\int_{a}^{b}\left[\int_{c}^{d}\left[\int_{p}^{q} f(x, y, z) \mathrm{d} z\right] \mathrm{d} y\right] \mathrm{d} x
$$

2. An Elementary region, $W \subset \mathbb{R}^{3}$ is defined by the inequalities $a \leq x \leq b, \varphi_{1}(x) \leq$ $y \leq \varphi_{2}(x)$ and $\gamma_{1}(x, y) \leq z \leq \gamma_{2}(x, y)$. The integral of a function in this region is calculated by

$$
\iiint_{W} f \mathrm{~d} V=\int_{a}^{b} \int_{\varphi_{1}(x)}^{\varphi_{2}(x)} \int_{\gamma_{1}(x, y)}^{\gamma_{2}(x, y)} f(x, y, z) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x
$$

2 Cylindrical and Spherical Polar coordinates

1. The polar coordinates (r, θ) of a point (x, y) in the $x y$-plane are given by

$$
x=r \cos \theta \quad y=r \sin \theta
$$

The inverse map to convert (x, y) to (r, θ) :

$$
r=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) .
$$

2. The cylindrical coordinates (r, θ, z) of a point $(x, y, z) \in \mathbb{R}^{3}$ are determined by

$$
x=r \cos \theta \quad y=r \sin \theta \quad z=z .
$$

The inverse map to convert (x, y, z) to (r, θ, z) :

$$
r=\sqrt{x^{2}+y^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad z=z .
$$

Volume element in cylindrical coordinates:

$$
\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=r \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} z
$$

Figure 1: Cylindrical coordinates of the point P. Image credits: mathinsight.org
3. The Spherical polar coordinates (ρ, θ, ϕ) of a point $(x, y, z) \in \mathbb{R}^{3}$ are

$$
x=\rho \sin \phi \cos \theta \quad y=\rho \sin \phi \cos \theta \quad z=\rho \cos \phi .
$$

The inverse map to convert (x, y, z) to (r, θ, z) :

$$
\rho=\sqrt{x^{2}+y^{2}+z^{2}} \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad \phi=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) .
$$

Spherical polar coordinates are exactly like specifying the longitude (ϕ) and latitude (θ) of a point along with its distance from the centre of the Earth (ρ).

Volume element in cylindrical coordinates:

$$
\mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi .
$$

Figure 2: Spherical coordinates of the point P. Image credits: mathinsight.org

3 Practice Problems

1. Evaluate the integral

$$
\iiint_{\mathcal{W}} x y z d V
$$

for the region \mathcal{W} defined by $0 \leq z \leq 1,0 \leq y \leq \sqrt{1-x^{2}}, 0 \leq x \leq 1$.
2. Find the volume of a solid in the octant $x \leq 0, y \leq 0, z \leq 0$ bounded by $x+y+z=1$ and $x+y+2 z=1$.
3. Find the equation in spherical polar coordinates of a cylinder along the z-axis lying between $0 \leq z \leq h$ and radius R.
4. Find the equation in cylindrical coordinates of a sphere of radius R.
5. Determine the mass of a solid lying between two concentric spheres of radii a and b where $0<a<b$, if the density at each point is equal to the square of the distance of this point from the centre.
Hint: The mass of a solid lying the region $\mathcal{W} \subset \mathbb{R}^{3}$ of density $f(x, y, z)$ is given by $M=\iiint_{\mathcal{W}} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$.

