§6.1, 6.2, Review
Spring MATH 2220
TA: Gokul Nair

NAME: \qquad
15 April 2020

1 Maps FROM BETWEEN \mathbb{R}^{n} AND CHANGE OF VARIABLES

1. A map $T: D^{*} \rightarrow \mathbb{R}^{2}$ associates every point $(u, v) \in D^{*} \subset \mathbb{R}^{2}$ to a point $T(u, v)=$ $(x, y) \in \mathbb{R}^{2}$. The image of the map T is denoted $D=T\left(D^{*}\right)$.
2. A linear map is one that can be represented as a 2×2 matrix. Remember that linear maps take parallelograms to parallelograms and they map the sides and vertices of the first to those of the second.
3. A map T is $1-1$ or injective if different points in the domain are sent to different points in the range or in other words, if (u, v) and $\left(u^{\prime}, v^{\prime}\right)$ are mapped onto the same point, then $(u, v)=\left(u^{\prime}, v^{\prime}\right)$ viz, $T(u, v)=T\left(u^{\prime}, v^{\prime}\right) \Longrightarrow(u, v)=\left(u^{\prime}, v^{\prime}\right)$.
4. When D the image of T, we say that T maps D^{*} onto D or is surjective.
5. The Jacobian matrix of a C^{1} map,

$$
\begin{aligned}
T: D^{*} & \subset \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
(u, v) & \mapsto(x(u, v), y(u, v))
\end{aligned}
$$

is

$$
J=\left(\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right)
$$

and we denote the determinant of this matrix

$$
\operatorname{det}(J)=\frac{\partial(x, y)}{\partial(u, v)}
$$

6. The two variable change of variables formula states that for a C^{1} map $\tau: D^{*} \rightarrow D$ that is 1-1 and onto D and an integrable function $f: D \rightarrow \mathbb{R}$,

$$
\iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{D^{*}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v .
$$

Note that there is an absolute sign on the Jacobian determinant.
7. The above statements for \mathbb{R}^{2} can be generalised easily to mappings between \mathbb{R}^{n}.

2 Practice Problems

1. Find the volume of the the region between the paraboloid $z=x^{2}+y^{2}$ and the cylinder $x^{2}+y^{2}=1$ contained in the $x \geq 0, y \geq 0$ and $z \geq 0$ octant by choosing an appropriate coordinate system.

Now express the same volume but in the following order of integration $\mathrm{d} x \mathrm{~d} z \mathrm{~d} y$.
2. Express the volume bounded between the ellipsoid $(x / 4)^{2}+(y / 6)^{2}+(z / 4)^{2}=1$ and the plane $z / 4+y / 6=1$ in the following orders of integration:
(a) $\mathrm{d} z \mathrm{~d} x \mathrm{~d} y$
(a) $\mathrm{d} x \mathrm{~d} z \mathrm{~d} y$

3. Consider the mapping T defined by the equations

$$
x=u+v \quad y=v-u^{2}
$$

(a) Calculate the Jacobian determinant $\frac{\partial(x, y)}{\partial(u, v)}$.
(b) A triangle denoted \triangle in th $u v$-plane has corners at $(0,0),(0,2)$ and $(2,0)$. Sketch the image $S:=T(\triangle)$ in the $x y$ plane.
Hint: Try to see how the mapping acts on the sides of the triangle.
(c) Express the integral to compute the area of S in the $x y$ plane.
(d) Evaluate $\iint_{S}(x-y+1)^{-2} \mathrm{~d} x \mathrm{~d} y$ using change of coordinates.
4. Evaluate $\iint_{R} \frac{y}{x} \mathrm{~d} x \mathrm{~d} y$ where R is the region having boundaries $x^{2}-y^{2}=1, x^{2}-y^{2}=4$ $y=0$ and $y=x / 2$ using an appropriate change of coordinates.
5. Consider the mapping T defined by the equations $x=u^{2}-v^{2}$ and $y=2 u v$.
(a) Compute the Jacobian.
(b) Let R be the rectangle in the $u v$-plane with corners at $(1,1),(2,1),(2,3)$ and $(1,3)$. Sketch the image of R under the map T.
(c) What region in the $u v$-plane maps onto the region $B=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}$, the unit disk in the $x y$-plane?
(d) Evaluate $\iint_{C} x y \mathrm{~d} x \mathrm{~d} y$ by using the coordinate change.

