$22 \ {\rm April} \ 2020$

1 INTEGRALS OVER CURVES

1. The *path integral* of a scalar valued function $f : \mathbb{R}^3 \to \mathbb{R}$ along a C^1 path parametrised as $\mathbf{c}(t)$, $a \leq t \leq b$ is

$$\int_{\mathbf{c}} f \, \mathrm{d}s = \int_{a}^{b} f(\mathbf{c}(t)) \|\mathbf{c}'(t)\| \, \mathrm{d}t.$$

- 2. Setting f = 1 in the above integral gives the *arc length* of the path.
- 3. The *line integral* of a continuous vector field $\mathbf{F}\mathbb{R}^3 \to \mathbb{R}^3$ along a C^1 path parametrised as $\mathbf{c}(t)$, $a \leq t \leq b$ is

$$\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = \int_{a}^{b} \mathbf{F}(\mathbf{c}(t)) \cdot \mathbf{c}'(t) dt.$$

4. A version of the fundamental theorem relating line integrals to gradients: If $f : \mathbb{R}^3 \to \mathbb{R}$ is a C^1 scalar field then

$$\int_{\mathbf{c}} \nabla f \cdot d\mathbf{s} = f(\mathbf{c}(b)) - f(\mathbf{c}(a)).$$

2 PRACTICE PROBLEMS

- 1. Compute the line integral of $\mathbf{F}(x, y) = \left(\frac{1}{|x|+|y|}, \frac{1}{|x|+|y|}\right)$, along the square with vertices at (1, 0), (0, 1), (-1, 0) and (0, -1) in an anti-clockwise direction.
- 2. Compute the line integral

$$\int_{\mathbf{c}} y \, \mathrm{d}x + z \, \mathrm{d}y + x \, \mathrm{d}z,$$

where **c** is the intersection of the two surfaces z = xy and $x^2 + y^2 = 1$ in an anticlockwise direction when viewed from the +z axis.

- 3. Evaluate the path integral of $f(x, y, z) = e^{\sqrt{z}}$ along the path $\mathbf{c}(t) = (1, 2, t^2)$, where $0 \le t \le 1$.
- 4. Suppose $\mathbf{F} : \mathbb{R}^3 \to \mathbb{R}^3$ is a vector field that has the property that $\int_{\mathbf{c}} \mathbf{F} \cdot d\mathbf{s} = 0$ for every **closed** path **c**. Then prove that if \mathbf{c}_1 and \mathbf{c}_2 are two different paths with the **same** starting and ending points, then

$$\int_{\mathbf{c}_1} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathbf{c}_2} \mathbf{F} \cdot d\mathbf{s}.$$