1 FUndAmental Theorems of vector calculus

1. Let \mathbf{F} be a vector field defined on S, the image of a parametrised surface $\boldsymbol{\Phi}$. The surface integral of \mathbf{F} is

$$
\iint_{\Phi} \mathbf{F} \cdot \mathrm{d} \mathbf{S}=\iint_{D} \mathbf{F} \cdot\left(\mathbf{T}_{u} \times \mathbf{T}_{v}\right) \mathrm{d} u \mathrm{~d} v
$$

2. Green's theorem Consider a simple region D with bounding curve ∂D. If P and Q are C^{1} functions on with domain D, we have

$$
\int_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y
$$

3. Stokes' theorem Let S be an oriented surface defined by a one-to-one parametrisation $\Phi: D \subset \mathbb{R}^{2} \rightarrow S$, where D is a region to which Green's theorem applies. Let ∂S denote the oriented boundary of S and let \mathbf{F} be a C^{1} vector field on S. Then

$$
\iint_{S}(\nabla \times F) \cdot \mathrm{d} \mathbf{S}=\int_{\partial S} F \cdot \mathrm{~d} s
$$

4. If S has no boundary i.e. $\partial S=\emptyset$, then $\int_{\partial S} F \cdot \mathrm{~d} s=0$, so the Stokes' theorem reads

$$
\iint_{S}(\nabla \times F) \cdot \mathrm{d} \mathbf{S}=0
$$

5. For a C^{1} vector field, F defined on all of \mathbb{R}^{3} all of these statements are equivalent:
(a) The line integral of F around any closed loop is zero.
(b) $\mathbf{F}=\nabla f$ for some scalar field $f(x, y, z)$.
(c) $\nabla \times \mathbf{F}=0$.

Such a vector field is said to be conservative.
6. Divergence theorem Let $W \subset \mathbb{R}^{3}$ be a region with boundary ∂W oriented by the outward pointing unit normal. \mathbf{F} is a smooth vector field defined on W, then

$$
\iiint_{W}(\nabla \cdot F) \mathrm{d} V=\iint_{\partial W} \mathbf{F} \cdot \mathrm{~d} S
$$

2 Practice Problems

1. Consider $D=\left\{(x, y) \mid x^{2}+y^{2}<0\right\}$, the open unit disk. Let

$$
P(x, y)=\frac{y}{x^{2}+y^{2}} \quad Q(x, y)=\frac{-x}{x^{2}+y^{2}}
$$

(a) Compute the line integral

$$
\int_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y
$$

(b) Apply Green's theorem and compute the relevant integral.
(c) Do you notice an issue?
2. Use Green's theorem to evaluate the line integral $\int_{C} y^{2} \mathrm{~d} x+x \mathrm{~d} y$ when
(a) C is a square with vertices $(0,0),(2,0),(2,2)$ and $(0,2)$.
(b) C is the circle of radius 2 centred at the origin.
(c) C is parametrised as $\mathbf{r}(t)=2 \cos ^{3} t \mathbf{i}+2 \sin ^{3} t \mathbf{j} 0 \leq t \leq 2 \pi$.
3. Let C be the curve $x^{2}+y^{2}=1 z=0$ and let S be the surface S_{1} together with S_{2} where S_{1} is defined by $x^{2}+y^{2} \leq 1, z=-1$ and S_{2} is defined by $x^{2}+y^{2}=1,-1 \leq z \leq 0$.
(a) Draw a figure showing an orientation such that Stokes' theorem applies the the surface S and the curve C.
(b) If R is another surface with boundary C, show that

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathrm{d} S=\iint_{R}(\nabla \times \mathbf{F}) \cdot \mathrm{d} S
$$

(c) If $F(x, y, z)=\left(y^{3}+\mathrm{e}^{x z}\right) \mathbf{i}-\left(x^{3}+\mathrm{e}^{y z}\right) \mathbf{j}+\mathrm{e}^{x y z} \mathbf{k}$, calculate

$$
\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathrm{d} S
$$

where S is the surface given above.
4. Let $I_{k}=\int_{C_{k}} P \mathrm{~d} x+Q \mathrm{~d} y$, where

$$
\begin{gathered}
P(x, y)=-y\left[\frac{1}{(x-1)^{2}+y^{2}}+\frac{1}{x^{2}+y^{2}}+\frac{1}{(x+1)^{2}+y^{2}}\right] \\
Q(x, y)=\frac{x-1}{(x-1)^{2}+y^{2}}+\frac{x}{x^{2}+y^{2}}+\frac{x+1}{(x+1)^{2}+y^{2}}
\end{gathered}
$$

and C_{k} are the circles shown in the following figure:

C_{1} is the smallest circle $x^{2}+y^{2}=1 / 8$ traced anticlockwise, C_{2} is the largest, $x^{2}+y^{2}=4$ traced anticlockwise and C_{3} is the curve made up of the three intermediate circles $(x-1)^{2}+y^{2}=1 / 4, x^{2}+y^{2}=1 / 4$ and $(x+1)^{2}+y^{2}=1 / 4$ traced out as shown. If $I_{2}=6 \pi$ and $I_{3}=2 \pi$, find the value of I_{1}.

