\qquad

Review

Differential Equations

An ordinary differential equation can be written generally as

$$
F\left(t, y, \frac{\mathrm{~d} y}{\mathrm{~d} t}, \ldots, \frac{\mathrm{~d}^{n} y}{\mathrm{~d} t^{n}}\right)=0
$$

Classification of Differential equations

- Number of independent variables: Ordinary or Partial,

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\right)^{2}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y=\sin (t) \quad \text { vs } \quad \frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+2 \frac{\partial^{2} u}{\partial x \partial y}+u^{3}=0
$$

- Number of dependent variables: Single variable or System of variables,

$$
t \frac{\mathrm{~d} y}{\mathrm{~d} t}+y=0 \quad \text { vs } \quad\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=x-x y \\
\frac{\mathrm{~d} y}{\mathrm{~d} t}=x y-y
\end{array}\right.
$$

- Order: Highest derivative occurring in the DE,

$$
\left(\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\right)^{2}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y=\sin (t) \quad \text { vs } \quad \frac{\mathrm{d}^{3} y}{\mathrm{~d} t^{3}}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}+y=0
$$

- Linear or Nonlinear: Depending on whether F is a linear or nonlinear function y and its derivatives,

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y=0 \quad \text { vs } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\sin (y)=0
$$

Practice Problems

1. Is the function $y(t)=1+t$ a solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{y^{2}-1}{t^{2}+2 t}$? Why or why not? What about $y=1+2 t$? What about $y=1$?
2. Suppose you and a friend are interested in how the number of fish in Lake Cayuga changes over time. Luckily, you're both in this class, and you decide to use a differential equation as a model. You remember that one of the tenets of math modelling is to start with a simple model and then build up complexity as needed, so you agree to make the following simplifying assumptions:
(a) there is only one species of fish in the lake;
(b) the species reproduces continuously;
(c) the species has access to unlimited resources (eg: food, space);
(d) the species is not being preyed upon;
(e) no fish are being added to the lake artificially (eg: fishy immigration).

You friend has come up with a few candidate models for $P(t)$, denoting the population size at time t. For each equation, discuss whether or not it is a good model in this context, specifically in light of the above assumptions as well as normal physical constraints (eg: there can't be a negative number of fish).
(a) $\frac{d P}{d t}=(t+1)^{2}$
(b) $\frac{d P}{d t}=2 P$
(c) $\frac{d P}{d t}=1-P^{2}$
(d) $\frac{d P}{d t}=P^{2}+1$
3. Modelling Predator-Prey relationships:
(a) Draw a graph with the population of fish, $P(t)$ on the y axis and time on the x axis.
(b) Suppose at $t=t_{0}$, that is after allowing some time to elapse, we introduce a species of shark into the lake. Let the number of sharks at time t be $Q(t)$. The sharks begin to prey on the fish already in the lake. Draw a graph showing how $P(t)$ would behave for a short period of time after t_{0}.
(c) As the sharks continue to prey on the fish, they reproduce in larger numbers. Draw a graph showing how $Q(t)$ would behave for a short period of time after t_{0}.
(d) Can the shark population grow without limits? What happens when there are too many sharks and too few fish to prey on? Draw a graph representing both $P(t)$ and $Q(t)$ over a large period of time.
(e) How would a graph with P on the x axis and Q on the y axis look?
4. Consider the differential equation

$$
\frac{d y}{d t}=\frac{1}{2} y(2+y)(y-8) .
$$

For what values of y is a solution to this differential equation
(a) increasing,
(b) decreasing,
(c) constant?

In each case, explain your reasoning.

