$\S 2.1,2.2,2.3$
Fall MATH 2930

NAME: \qquad
09 September 2021

Review

Integrating factors

- A linear first order differential equation can generally be written as

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}+p(t) y=g(t) \tag{1}
\end{equation*}
$$

- The integrating factor for (1) is given by

$$
\mu(t)=\exp \left(\int p(t) d t\right)
$$

- The general solution to (1) is

$$
y(t)=\frac{1}{\mu(t)}\left(\int \mu(s) g(s) d s+c\right) .
$$

Separable ODEs

- An ODE is separable if it can be written as

$$
N(y) \frac{\mathrm{d} y}{\mathrm{~d} x}+M(x)=0
$$

- The solution is implicitly given by

$$
\int N(y) d y+\int M(x) d x=0
$$

- Sometimes it is possible to solve the resulting equation to obtain y as a function of x.

Practice Problems

1. Free fall with air resistance

Recall that Newton's 2nd law says that mass \times acceleration $=$ Force, i.e.

$$
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=F
$$

(a) Suppose a ball of mass m is falling under the influence of gravity (a constant force with magnitude $m g$). Assume that there is no air resistance and write down the ODE for the velocity v of the particle. Solution: $d v / d t=g$
(b) Now suppose that there is air resistance. The force due to air resistance is proportional to the velocity of the ball and in the opposite direction of motion.
 $m g-\eta v$
(c) We conduct an experiment by dropping a $2 k g$ ball in air with no initial velocity. Assume that the friction constant (constant of proportionality) is $1 \mathrm{~kg} / \mathrm{s}$. What is the velocity of the ball after 5 seconds. Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$. Solution: The integrating factor is given by $\mu(t)=e^{\int 1 / 2 d t}$. Solving the equation yields $20-$ $20 e^{-t / 2}$.
2. Logistic growth

When unlimited resources are available to a species, their population tends to grow exponentially with time. This behaviour can be described by the following differential equation;

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=r P
$$

where r is referred to as the reproduction rate.

We now try to understand what happens when there is a limit to the amount of resources available.
(a) One way of modelling the limitation of resources is by saying that the population growth rate, $\frac{\mathrm{d} P}{\mathrm{~d} t}$ is positive as long as P is less than some maximum size, K and if P crosses $K, \frac{\mathrm{~d} P}{\mathrm{~d} t}$ becomes negative. Choose the ODE with this property:
i. $\frac{\mathrm{d} P}{\mathrm{~d} t}=\frac{r P}{K-P}$
ii. $\frac{\mathrm{d} P}{\mathrm{~d} t}=1-r\left(\frac{P}{K}\right)^{2}$
iii. $\frac{\mathrm{d} P}{\mathrm{~d} t}=r P\left(1-\frac{P}{K}\right)$

Hint: More than one of the options may have the required property, but only one really makes sense
(b) Solve the one that you chose with $r=1$ and $K=1$. Assume that at $t=0$, $P=1 / 2$ (ask the TA for a hint if you are finding it hard to integrate). Solution: The equation is separable.

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=P(1-P) \Longrightarrow \frac{d P}{P(1-P)}=d t
$$

Use $\frac{1}{P(1-P)}=\frac{1}{P}+\frac{1}{1-P}$ to get $\ln P-\ln (1-P)=t$. Solving for P yields $P(t)=$ $C e^{t} /\left(1+C e^{t}\right)$. Plugging in the initial conditions, we get $C=1$.
(c) Seasonal variations : Now suppose that the reproduction rate of the species depends on the season. Since the season is periodic we can naively model it by a cos function. One way of incorporating this into our original model is to multiply the right-hand-side of the ODE by $(1+q \cos (t))$ where q is a constant. Solve the resulting ODE again assuming $r=1, K=1$, and $P(0)=1 / 2$. Solution: The equation is still separable, and the solution is $P(t)=\frac{C e^{t+q \sin t}}{1+C e^{t+q \sin t}}$. Again the initial conditions give $C=1$.
(d) Plot the solutions of (b) and (c) on a computer. For (c) use $q=1, q=10$ and $q=100$ and see how the behaviour changes. (If no one in your group has a computer with them, you can do this part at home)
3. Solve the following ODEs:
(a) $t^{3} y^{\prime}+4 t^{2} y=e^{-t}$ Solution: The integrating factor is given by $\mu(t)=\exp (4 \ln t)=$ t^{4}. Solving the ODE, we get $y(t)=-\frac{e^{-t}}{t^{3}}-\frac{e^{-t}}{t^{4}}+\frac{C}{t^{4}}$.
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-e^{-x}}{y+e^{y}}$ Solution: This is separable, and the solution is given implicitly by $y^{2}-x^{2}+2\left(e^{y}-e^{x}\right)=C$.
4. Consider the initial value problem

$$
y^{\prime}-3 y=3 t+e^{2 t} \quad y(0)=y_{0}
$$

Find the value of y_{0} that separates solutions that grow positively as $t \rightarrow \infty$ from those that grow negatively. How does the solution that corresponds to this critical value of y_{0} behave as $t \rightarrow \infty$? Solution: The integrating factor is $e^{-3 t}$, and solving the ODE we get $y=-t-\frac{1}{3}-e^{-2 t}+\left(y_{0}+\frac{4}{3}\right) e^{3 t}$. As $t \rightarrow \infty$ the exponential dominates the long-term behaviour. Thus the critical value is $y_{0}=\frac{-4}{3}$. At exactly the critical value, the linear term dominates, so $y \rightarrow-\infty$.

