Review

Autonomous ODEs

- An autonomous ODE can be written as

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=f(y)
$$

- An equilibrium or critical point of the equation is a y_{*} such that $f\left(y_{*}\right)=0$.
- Let y_{*} be an equilibrium then:
- y_{*} is asymptotically stable if solutions $y(t)$ starting close enough to y_{*} converge to y_{*} as $t \rightarrow \infty$.
- y_{*} is unstable if solutions $y(t)$ do not converge to y_{*} as $t \rightarrow \infty$ even if they start very close to y_{*}.
- The stability of y_{*} can be determined using a phase line. Take y to be close to y_{*} and check:
- Stable: If $f(y)<0$ for $y>y_{*}$ and $f(y)>0$ for $y<y_{*}$
- Unstable: If $f(y)>0$ for $y>y_{*}$ and $f(y)<0$ for $y<y_{*}$
- Semistable: Stable on one side and unstable on the other.

Practice Problems ${ }^{1}$

1. Consider the initial value problem

$$
y^{\prime}-3 y=3 t+e^{2 t} \quad y(0)=y_{0}
$$

Find the value of y_{0} that separates solutions that grow positively as $t \rightarrow \infty$ from those that grow negatively. How does the solution that corresponds to this critical value of y_{0} behave as $t \rightarrow \infty$?
2. For each part below, create a continuous autonomous differential equation that has the stated properties (if possible). If it is not possible, provide justification for why not. Hint: Try to draw the phase-line first.
(a) Exactly three equilibria, two unstable and one stable.
(b) Exactly two equilibria, both stable
(c) Exactly two equilibria, one unstable and one semi-stable.
${ }^{1}$ Problems in this worksheet are adapted from https://math.uchicago.edu/~ecartee and https://iode.wordpress.ncsu.edu/ which is distributed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licence
3. Consider the autonomous ODE:

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=a y-y^{3}
$$

a is a parameter and it doesn't depend on y or t. It can either be positive or negative. You will see that the number of equilibria will depend on the value of a.
(a) On the y - t axes below, sketch the qualitative behaviour of solutions $y(t)$ for a couple different values of a.

(b) (Optional) On the $a-y$ axes below, plot the different equilibria y versus the value of the parameter a. Label which parts of the graph correspond to stable and unstable equilibria.

4. Solve the following ODEs:
(a) $t^{3} y^{\prime}+4 t^{2} y=e^{-t}$
(b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-e^{-x}}{y+e^{y}}$
5. (a) Let C be the temperature (in Fahrenheit) of a cup of coffee that is cooling off
to room temperature (70 Fahrenheit). Which of the following differential equations best models the situation and why? Hint: What do you think should be the equilibrium (or equilibria) temperature(s)? What about stability?
i. $C^{\prime}=0.4(C-70)$
v. $C^{\prime}=-0.4(C-70)$
ii. $C^{\prime}=0.4(1-C / 70)$
iii. $C^{\prime}=-0.4 C+28$
vi. $C^{\prime}=-0.4(C-28)$
iv. $C^{\prime}=-0.4 C$
vii. $C^{\prime}=-0.4(C-70)^{2}$
(b) For the equation you picked in part (a), draw a phase line. Now sketch some solutions for different initial values on the C - t plane. Be sure to label any equilibria and their stability.
(c) Consider a situation where there are two separate cups of coffee. At $t=0$, one of the cups starts at a temperature of $C=180$, while the other starts at a temperature of $C=160$.

Will there ever be a time t at which the temperatures of the two cups are exactly the same? Why or why not?

