\qquad

Review

Exact ODEs

- The differential equation $M(x, y)+N(x, y) y^{\prime}=0$ is exact if there is a function $\psi(x, y)$ such that:

$$
\frac{\partial \psi}{\partial x}(x, y)=M(x, y) \quad \frac{\partial \psi}{\partial y}(x, y)=N(x, y)
$$

- Solutions to the above exact equation are given implicitly by

$$
\psi(x, y)=c
$$

- If M and N are continuously differentiable, then the equation being exact is equivalent to having

$$
\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}
$$

- If the equation is not separable, but $\frac{M_{y}-N_{x}}{N}$ is dependent only on x (doesn't depend on y), then you can find an integrating factor, μ by solving

$$
\frac{\mathrm{d} \mu}{\mathrm{~d} x}=\frac{M_{y}-N_{x}}{N} \mu
$$

Numerical Integration

- For the differential equation $y^{\prime}=f(y, t)$, Euler integration can be written iteratively as

$$
y_{n+1}=y_{n}+f\left(t_{n}, y_{n}\right)\left(t_{n+1}-t_{n}\right)
$$

- Usually we take the difference $\left(t_{n+1}-t_{n}\right)$ to be some fixed number, h, which is also referred to as the step size.

Practice Problems ${ }^{1}$

1. Consider the differential equation

$$
\left(x y^{2}+b x^{2} y\right)+(x+y) x^{2} y^{\prime}=0
$$

(a) Find the value(s) of b for which the given equation is exact.
(b) Solve the equation for the value(s) of b you found.
2. Consider the equation

$$
\begin{aligned}
\frac{d y}{d t} & =\lambda y \\
y(0) & =y_{0}
\end{aligned}
$$

(a) Write down the solution to this equation (by now, you've solved this equation several times).
(b) Now, instead of solving it directly, write down three Euler iterates using a step size h.
${ }^{1}$ Some of the Problems are taken from https://math.uchicago.edu/~ecartee/2930_sp19/ worksheet4.pdf
(c) Find a formula for the $n^{\text {th }}$ Euler iterate, y_{n}. The formula should only depend on y_{0}, λ and n.
(d) Suppose $y_{0}=1$ and $\lambda=-1$. Are there any values of the step size h that would be totally unacceptable to pick i.e. are there values of h for which the numerical solution behaves very differently from the analytical solution? If so, why?
(e) Let $y_{0}=1$ and $\lambda=1$ and suppose we want to compute the solution via Euler's method in an interval $[0, t]$. Let $n=t / h$ and show that y_{n} converges to the analytical solution as $h \rightarrow 0$.
3. Consider the differential equation

$$
x^{2} y^{3}+x\left(1+y^{2}\right) y^{\prime}=0 .
$$

(a) Show that the equation is not exact.
(b) Show that it can be made exact by multiplying both sides of the equation by the integrating factor $\mu(x, y)=\frac{1}{x y^{3}}$.
(c) Now that the equation is exact, solve it.
4. Consider the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=t+1 \quad y(0)=1
$$

(a) Approximate $y(0.1), y(0.2)$ and $y(0.3)$ using Euler's method with $h=0.1$.
(b) Solve the equation analytically and compute $y(0.1), y(0.2)$ and $y(0.3)$ using the actual solution. Are you satisfied with the approximation?

