\qquad

Review

2^{ND} Order ODEs

- A Linear, Second order, Constant Coefficient, Homogeneous ODE is written as

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \quad y\left(t_{0}\right)=y_{0} \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

- Steps to solve the above:

1. Plug in $y=e^{r t}$ to get the Characteristic equation:

$$
a r^{2}+b r+c=0
$$

2. Solve the characteristic equation (either factoring or using the quadratic formula) to get two roots: r_{1} and r_{2} (these can potentially be complex numbers)
3. If $r_{1} \neq r_{2}$, the general solution is given by:

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

4. If $r_{1}=r_{2}$ (repeated roots), the general solution is given by

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} t e^{r_{2} t} .
$$

5. Plug in the two initial conditions to find C_{1} and C_{2}.

Complex Numbers

- A complex number is of the form $z=a+i b$ where $i=\sqrt{-1}$.
- Euler's formula is given by

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

- The exponential of a complex number maybe written as

$$
e^{z}=e^{a+i b}=e^{a} e^{i b}=e^{a}(\cos b+i \sin b)
$$

Practice Problems

1. Consider the initial value problem

$$
y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=1
$$

Find the solution of this initial value problem.
2. Can you find a differential equation whose general solution is

$$
y=c_{1} e^{t}+c_{2} e^{-4 t} \quad ?
$$

3. Consider the Euler formula $e^{i s}=\cos s+i \sin s$.
(a) Replacing s with βt, and then multiplying by $e^{\alpha t}$, we get

$$
e^{(\alpha+i \beta) t}=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))
$$

Can you find a similar formula for $e^{(\alpha-i \beta) t}$?
(b) Suppose you have two functions

$$
\begin{aligned}
& A(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& B(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

Simplify the two following expressions:

$$
\begin{aligned}
& x_{1}(t)=\frac{A(t)+B(t)}{2} \\
& x_{2}(t)=i \frac{A(t)-B(t)}{2}
\end{aligned}
$$

(c) What do you notice about $x_{1}(t)$ and $x_{2}(t)$ compared to $A(t)$ and $B(t)$?
(d) If $A(t)$ and $B(t)$ were solutions to a differential equation of the form

$$
a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0
$$

would $x_{1}(t)$ and $x_{2}(t)$ be solutions too? How about $c_{1} x_{1}(t)+c_{2} x_{2}(t)$ for arbitrary constants c_{1} and c_{2} ?
4. Given an initial value problem

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=v_{0}
$$

Suppose that for some r_{1}, r_{2}, the general solution is:

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

(a) In order to solve the initial value problem, C_{1} and C_{2} need to solve a system of two linear equations. What is that system of equations?
(b) Given $r_{1} \neq r_{2}$, are you always guaranteed to be able to find C_{1} and C_{2} to solve the initial value problem? If so, will C_{1} and C_{2} be unique?

Problems in this worksheet are adapted from https://math.uchicago.edu/~ecartee

