Review

2^{ND} Order ODEs

- A Linear, Second order, Constant Coefficient, Homogeneous ODE is written as

$$
a y^{\prime \prime}+b y^{\prime}+c y=0 \quad y\left(t_{0}\right)=y_{0} \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
$$

- Steps to solve the above:

1. Plug in $y=e^{r t}$ to get the Characteristic equation:

$$
a r^{2}+b r+c=0
$$

2. Solve the characteristic equation (either factoring or using the quadratic formula) to get two roots: r_{1} and r_{2} (these can potentially be complex numbers)
3. If $r_{1} \neq r_{2}$, the general solution is given by:

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t} .
$$

4. If $r_{1}=r_{2}$ (repeated roots), the general solution is given by

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} t e^{r_{2} t} .
$$

5. Plug in the two initial conditions to find C_{1} and C_{2}.

Complex Numbers

- A complex number is of the form $z=a+i b$ where $i=\sqrt{-1}$.
- Euler's formula is given by

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

- The exponential of a complex number maybe written as

$$
e^{z}=e^{a+i b}=e^{a} e^{i b}=e^{a}(\cos b+i \sin b)
$$

Reduction of Order

Given a differential equation,

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0
$$

and a solution $y_{1}(t)$, then a second solution, $y_{2}(t)=v(t) y_{1}(t)$ can be found by solving

$$
y_{1} v^{\prime \prime}+\left(2 y_{1}^{\prime}+p y_{1}\right) v^{\prime}=0
$$

for v.

Practice Problems

1. Example Problem: Solve the differential equation:

$$
5 y^{\prime \prime}+2 y^{\prime}+y=0 \quad y(0)=2 \quad y^{\prime}(0)=1
$$

Solution: Solved in class.
2. Suppose $y_{1}(t)=t^{-1}$ is a solution to the equation

$$
2 t^{2} y^{\prime \prime}+3 t y^{\prime}-y=0 \quad t>0
$$

Let $y_{2}(t)=v(t) y_{1}(t)=\frac{v(t)}{t}$.
(a) Compute y_{2}^{\prime} and $y_{2}^{\prime \prime}$ (your answer will involve v, v^{\prime} and $v^{\prime \prime}$).

Solution: $y^{\prime}=v^{\prime} t^{-1}-v t^{-2}$ and $y^{\prime \prime}=v^{\prime \prime} t^{-1}-2 v^{\prime} t^{-2}+2 v t^{-3}$
(b) Plug y_{2}, y_{2}^{\prime} and $y_{2}^{\prime \prime}$ into the differential equation and simplify to get an ODE for $v(t)$.
Solution: $2 t v^{\prime \prime}-v^{\prime}=0$.
(c) Solve the resulting ODE for $v(t)$ and hence find $y_{2}(t)$.

Solution: Let $w=v^{\prime}$ and solve for w to get $w=c t^{1 / 2}$. So $v(t)=\frac{2}{3} c t^{3 / 2}+k$, where c and k are arbitrary constants.
3. On the way to Collegetown, a MATH 2930 student found a piece of paper on the ground. Much of the ink was smudged by water but clearly visible was the word "solution" followed by the expression,

$$
y(t)=e^{-2 t}\left(C_{1} \sin (t)+C_{2} \cos (t)\right)
$$

Also visible (very conveniently) was the phrase " 2 nd order constant coefficient" but the differential equation itself was smudged except for

$$
\ldots+5 y=0
$$

Find the differential equation.
Solution: We can deduce that the roots of the characteristic equation are $r=-2 \pm i$. Suppose the characteristic equation were $a r^{2}+b r+5=0$, then we have

$$
-2 \pm i=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-20 a}}{2 a}
$$

Setting the real parts equal to each other and the imaginary parts equal to each other, we get

$$
b=4 a \quad i=\frac{\sqrt{b^{2}-20 a}}{2 a}
$$

Squaring the second equation and substituting the first expression, we get the quadratic $-4 a^{2}=16 a^{2}-20 a$ and the roots are $a=0,1$. a can't be 0 since then it wouldn't be second order. So $a=1$ and $b=4$ i.e.

$$
y^{\prime \prime}+4 y^{\prime}+5 y=0
$$

4. Solve the initial value problem

$$
9 y^{\prime \prime}-12 y^{\prime}+4 y=0 \quad y(0)=2 \quad y^{\prime}(0)=-1 .
$$

Solution: The characteristic equation has the repeated root $\frac{2}{3}$. Hence the general solution of the ODE is

$$
y(t)=C_{1} e^{2 t / 3}+C_{2} t e^{2 t / 3}
$$

The derivative is $y^{\prime}(t)=\frac{2 C_{1}}{3} e^{2 t / 3}+\frac{2 C_{2}}{3} t e^{2 t / 3}+C_{2} e^{2 t / 3}$. Plugging in the initial conditions,

$$
2=C_{1} \quad-1=\frac{2 C_{1}}{3}+C_{2}
$$

So we can solve for C_{2} to get $C_{2}=\frac{-7}{3}$. The solution is therefore

$$
y(t)=2 e^{2 t / 3}-\frac{7}{3} t e^{2 t / 3}
$$

Problems in this worksheet are adapted from https://math.uchicago.edu/~ecartee

