Review

$2^{\text {ND }}$ Order Non-homogeneous ODEs

- A linear second order non-homogeneous ODE with constant coefficients can be written as

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{*}
\end{equation*}
$$

- The corresponding homogeneous ODE is

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{**}
\end{equation*}
$$

- If $y_{1}(t)$ and $y_{2}(t)$ are the solutions of $(* *)$ (a.k.a. homogeneous or complementary solutions), and $Y(t)$ is any solution of $(*)$ (a.k.a. particular solution), then the general solution of $(*)$ is written as

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

- If Y_{1} is a particular solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$ and Y_{2} is a particular solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$, then $Y_{1}+Y_{2}$ is a solution of $y^{\prime \prime}+P(t) y^{\prime}+q(t) y=g_{1}(t)+g_{2}(t)$.

Undetermined Coefficients

- This is a method to systematically guess a particular solution for $(*)$.
- Only works when $g(t)$ is a sin, cos, exponential, polynomial or a combination of these functions.
- Steps:
- Solve the homogeneous equation to obtain y_{1} and y_{2}.
- Make a guess for $Y(t)$. Common initial guess:

$g(t):$	Guess $Y(t)$ as
t	$A t+B$
t^{2}	$A t^{2}+B t+C$
t^{3}	$A t^{3}+B t^{2}+C t+D$
$e^{a t}$	$A e^{a t}$
$\sin (a t)$	$A \sin (a t)+B \cos (a t)$
$\cos (a t)$	$A \sin (a t)+B \cos (a t)$
Product of functions listed above	Product of guesses listed above

- If your guess matches 1 of the homogeneous solutions, then multiply your guess by t.
- If your guess matches 2 of the homogeneous solutions, then multiply your guess by t^{2} (this happens when your homogeneous equation has repeated roots).
- Plug in your guess into (*) and solve for all the constants A, B, C, \ldots etc. to obtain $Y(t)$.
- If the $g(t)$ is the sum of several terms, do the above steps for each of those terms and add the solutions to get the full particular solution.
- Write down the general solution (by adding the homogeneous solution and particular solution).

Practice Problems

1. Example Problem: Find the general solution of

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=e^{t / 2}
$$

Using the method of undetermined coefficients.
Solution: First we plug in $e^{r} t$ to solve the homogeneous problem. This gives us the characteristic equation

$$
r^{2}-r+\frac{1}{4}=0
$$

and the roots are $\frac{1}{2}$ repeated. Thus $y_{1}=e^{t / 2}$ and $y_{2}=t e^{t / 2}$. Now, since the right hand side is $e^{t / 2}$ we guess $Y(t)=A e^{t / 2}$. We see that this is contained in both the homogeneous solutions, thus we will have to multiply our guess by t^{2}. Our new guess is $A t^{2} e^{t / 2}$.
Let's plug this into the ODE:

$$
\begin{gathered}
Y^{\prime}=\frac{A}{2} t^{2} e^{t / 2}+2 A t e^{t / 2} \\
Y^{\prime \prime}=\frac{A}{4} t^{2} e^{t / 2}+A t e^{t / 2}+2 A e^{t / 2}+A t e^{t / 2}=\frac{A}{4} t^{2} e^{t / 2}+2 A t e^{t / 2}+2 A e^{t / 2} \\
Y^{\prime \prime}-Y^{\prime}+\frac{1}{4} Y=\left(\frac{A}{4} t^{2} e^{t / 2}+2 A t e^{t / 2}+2 A e^{t / 2}\right)-\left(\frac{A}{2} t^{2} e^{t / 2}+2 A t e^{t / 2}\right)+\frac{1}{4}\left(A t^{2} e^{t / 2}\right)=2 A e^{t / 2}
\end{gathered}
$$

Thus we need to satisfy $2 A e^{t / 2}=e^{t / 2}$ or $A=\frac{1}{2}$. We can now write down the general solution as

$$
y=c_{1} e^{t / 2}+c_{2} t e^{t / 2}+\frac{1}{2} t^{2} e^{t / 2}
$$

2. For the following non-homogeneous equations, determine a suitable form for the particular solution $Y(t)$ using the method of undetermined coefficients. You don't have to find the coefficients!
(a)

$$
y^{\prime \prime}+2 y^{\prime}+5 y=t
$$

Solution: Roots of the characteristic equation are $-1 \pm 2 i$ and the homogeneous solutions are $y_{1}=e^{-t} \cos (2 t)$ and $y_{1}=e^{-t} \sin (2 t)$. Since the right hand side is just t, we pick $Y(t)=A t+B$.
(b)

$$
y^{\prime \prime}+2 y^{\prime}+5 y=2 t e^{-2 t} \cos (t)
$$

Solution: The homogeneous solution is the same as before. The right hand side has three terms multiplied. There's $t, e^{-2 t}$ and cost. Looking at the table, the corresponding choices of particular solution are $A_{1} t+B_{1}, A_{2} e^{-2 t}$ and $A_{3} \cos t+$
$B_{3} \sin t$. Thus the particular solution should be the product of these three, i.e. $Y(t)=(A t+B) e^{-2 t} \cos t+(C t+D) e^{-2 t} \sin t$ where we have collected the constants and given them new names. This is a good guess since it doesn't match with the homogeneous solutions.
(c)

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 t e^{-t} \cos (2 t)
$$

Solution: The homogeneous solution is the same as before. Following the same steps in (b) to arrive at $Y(t)=(A t+B) e^{-t} \cos (2 t)+(C t+D) e^{-t} \sin (2 t)$. However we notice that this guess has terms of the form $e^{-t} \cos (2 t)$ and $e^{-t} \sin (2 t)$ which match with the homogeneous solutions we computed in (a). This means that we have to multiply our guess by t and we have $Y(t)=(A t+B) t e^{-t} \cos (2 t)+(C t+$ D) $t e^{-t} \sin (2 t)$
3. Solve the initial value problem

$$
y^{\prime \prime}+y^{\prime}-2 y=2 t \quad y(0)=0 \quad y^{\prime}(0)=1
$$

using the method of undetermined coefficients.
Solution: The homogeneous solution is straightforward to compute: $c_{1} e^{-2 t}+c_{2} e^{t}$. Now since the right hand side is t, we guess $Y=A t+B$. Thus $Y^{\prime}=A$ and $Y^{\prime \prime}=0$. Plugging this into the equation, we get $(A-2 B)-2 A t=2 t$. In order for the equation to hold, the coefficients of t and the constant terms have to match thus $2=-2 A$ and $A-2 B=0$. Solving these two equations, we get $A=-1$ and $B=-1 / 2$. The general solution to the ODE is thus given by

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{t}-t-\frac{1}{2} .
$$

Plugging in the initial conditions, we get $c_{1}=\frac{-1}{2}$ and $c_{2}=1$.

Problems in this worksheet are adapted from https://math.uchicago.edu/~ecartee

