Review

$2^{\text {ND }}$ Order Non-homogeneous ODEs

- A linear second order non-homogeneous ODE with constant coefficients can be written as

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \tag{*}
\end{equation*}
$$

- The corresponding homogeneous ODE is

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{**}
\end{equation*}
$$

- If $y_{1}(t)$ and $y_{2}(t)$ are the solutions of $(* *)$ (a.k.a. homogeneous or complementary solutions), and $Y(t)$ is any solution of $(*)$ (a.k.a. particular solution), then the general solution of $(*)$ is written as

$$
y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)+Y(t)
$$

- If Y_{1} is a particular solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)$ and Y_{2} is a particular solution of $a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)$, then $Y_{1}+Y_{2}$ is a solution of $y^{\prime \prime}+P(t) y^{\prime}+q(t) y=g_{1}(t)+g_{2}(t)$.

Undetermined Coefficients

- This is a method to systematically guess a particular solution for $(*)$.
- Only works when $g(t)$ is a sin, cos, exponential, polynomial or a combination of these functions.
- Steps:
- Solve the homogeneous equation to obtain y_{1} and y_{2}.
- Make a guess for $Y(t)$. Common initial guess:

$g(t):$	Guess $Y(t)$ as
t	$A t+B$
t^{2}	$A t^{2}+B t+C$
t^{3}	$A t^{3}+B t^{2}+C t+D$
$e^{a t}$	$A e^{a t}$
$\sin (a t)$	$A \sin (a t)+B \cos (a t)$
$\cos (a t)$	$A \sin (a t)+B \cos (a t)$
Product of functions listed above	Product of guesses listed above

- If your guess matches 1 of the homogeneous solutions, then multiply your guess by t.
- If your guess matches 2 of the homogeneous solutions, then multiply your guess by t^{2} (this happens when your homogeneous equation has repeated roots).
- Plug in your guess into (*) and solve for all the constants A, B, C, \ldots etc. to obtain $Y(t)$.
- If the $g(t)$ is the sum of several terms, do the above steps for each of those terms and add the solutions to get the full particular solution.
- Write down the general solution (by adding the homogeneous solution and particular solution).

Practice Problems

1. Example Problem: Find the general solution of

$$
y^{\prime \prime}-y^{\prime}+\frac{1}{4} y=e^{t / 2}
$$

Using the method of undetermined coefficients.
2. For the following non-homogeneous equations, determine a suitable form for the particular solution $Y(t)$ using the method of undetermined coefficients. You don't have to find the coefficients!
(a)

$$
y^{\prime \prime}+2 y^{\prime}+5 y=t
$$

(b)

$$
y^{\prime \prime}+2 y^{\prime}+5 y=2 t e^{-2 t} \cos (t)
$$

(c)

$$
y^{\prime \prime}+2 y^{\prime}+5 y=3 t e^{-t} \cos (2 t)
$$

3. Solve the initial value problem

$$
y^{\prime \prime}+y^{\prime}-2 y=2 t \quad y(0)=0 \quad y^{\prime}(0)=1
$$

using the method of undetermined coefficients.

