NAME:
 21 October 2021

Review

Free and Forced Vibrations

- The following equation represents vibrations:

$$
m u^{\prime \prime}(t)+\gamma u^{\prime}(t)+k u(t)=F(t)
$$

where m is mass, γ is the damping coefficient, k is the spring constant and $F(t)$ is the forcing.

- $\omega_{0}=\sqrt{k / m}$ is referred to as the natural frequency.
- When $F(t)=0$, i.e. homogeneous, we refer to the vibrations as free.
- Additionally, if $\gamma=0$ we refer to the vibrations as undamped.
- The solution to undamped free vibrations is

$$
u(t)=R \cos \left(\omega_{0} t-\delta\right)
$$

thus it oscillates with a constant amplitude forever.

- The solution to damped free vibrations when $0<\gamma^{2}<4 \mathrm{~km}$ (small damping) is

$$
u(t)=R_{0} e^{-\gamma t /(2 m)} \cos \left(\omega_{0} t-\delta_{0}\right)
$$

thus the amplitude of oscillation decreases with time due to the exponential factor.

- The forcing, $F(t)$ is usually a sine or cosine when it is present, i.e., $F(t)=F_{0} \cos (\omega t)$ where ω is called the forcing frequency.
- If $\omega \neq \omega_{0}$, we have the general solution

$$
u(t)=\underbrace{R_{0} e^{-\gamma t /(2 m)} \cos \left(\omega_{0} t-\delta_{0}\right)}_{\text {homogeneous sol. }}+\underbrace{R \cos (\omega t-\delta)}_{\text {particular sol. }}
$$

- If $\gamma=0$ and $\omega=\omega_{0}$, we have resonance and

$$
u(t)=R_{0} \cos \left(\omega_{0} t-\delta_{0}\right)+R t \cos (\omega t-\delta)
$$

(notice the factor of t in the second term). In this case the amplitude goes to ∞ as t increases.

Practice Problems

1. Example problem: Consider the damped, forced oscillator described by

$$
u^{\prime \prime}+\lambda u^{\prime}+u=F_{0} \sin (\omega t)
$$

where $\lambda>0$.
(a) Find the steady state (i.e. particular) solution of this equation.

Solution: First, suppose that $\lambda>0$ (that is λ is not zero). Then we know that the homogeneous solution is going to have term of the form $e^{-} \square t \sin (\square t)$ and $e^{-} \square t \cos (\square t)$ and since the forcing term (inhomogeneity) is simply a sine (no exponential term) we do not have to worry about multiplying our particular solution by t. Thus we may write

$$
Y(t)=A \cos \omega t+B \sin \omega t
$$

Computing the derivatives, we have

$$
Y^{\prime}=-\omega A \sin \omega t+\omega B \cos \omega t
$$

and

$$
Y^{\prime \prime}=-\omega^{2} A \cos \omega t-\omega^{2} B \cos \omega t
$$

Plugging this into the left hand side of the original equation we get,

$$
Y^{\prime \prime}+\lambda Y^{\prime}+Y=\left(A+\lambda \omega B-\omega^{2} A\right) \cos \omega t+\left(B-\lambda \omega A-\omega^{2} B\right) \sin \omega t
$$

We would like this to equal the right hand side, i.e. $F_{0} \sin \omega t$. Comparing like terms,

$$
\begin{gathered}
A+\lambda \omega B-\omega^{2} A=0 \\
B-\lambda \omega A-\omega^{2} B=F_{0}
\end{gathered}
$$

Using the first equation, we write A in terms of B :

$$
A=\frac{-\lambda \omega}{1-\omega^{2}} B
$$

Plugging this into the second equation:

$$
\begin{gathered}
B+\frac{\lambda^{2} \omega^{2}}{1-\omega^{2}}-\omega^{2} B=f_{0} \\
B\left[\left(1-\omega^{2}\right)^{2}+\lambda^{2} \omega^{2}\right]=F_{0}\left(1-\omega^{2}\right)
\end{gathered}
$$

Thus,

$$
A=\frac{F_{0}\left(1-\omega^{2}\right)}{\lambda^{2} \omega^{2}+\left(1-\omega^{2}\right)^{2}} \quad B=\frac{-F_{0} \lambda \omega}{\lambda^{2} \omega^{2}+\left(1-\omega^{2}\right)^{2}}
$$

(b) Find the amplitude of the steady state solution from part (a).

Solution: The amplitude is given by $R=\sqrt{A^{2}+B^{2}}$. Computing this quantity gives

$$
R=\frac{F_{0}}{\sqrt{\lambda^{2} \omega^{2}+\left(1-\omega^{2}\right)^{2}}}
$$

(c) Let $F_{0}=1$ and $\lambda=1$. Plot the amplitude as a function of forcing frequency ω. Solution:
(d) Discuss what happens to the above graph when λ gets closer and closer to 0 .

Solution:
2. A spring is stretched 6 inches by a mass that weighs 8 lb . The mass is attached to a mechanism that has a damping constant of $0.25 \mathrm{lb} \mathrm{s} / \mathrm{ft}$ and is acted upon by an external force of $f \cos 2 t \mathrm{lb}$. Assume that acceleration due to gravity, $g=32 \mathrm{ft} / \mathrm{s}^{2}$.
Find the steady state solution for the system. Give the form of the transient solution (with arbitrary constants).
Solution: The spring constant is $k=8 /(1 / 2)=16 \mathrm{lb} / \mathrm{ft}$ and the mass is $8 / 32=0.25$ $\mathrm{lb} s^{2} / \mathrm{ft}$. The damping constant is $\gamma=0.25 \mathrm{lbs} / \mathrm{ft}$. The external force is $4 \cos 2 t \mathrm{lb}$. Therefore the equation of motion is

$$
u^{\prime \prime}+u^{\prime}+64 u=16 \cos 2 t
$$

Solving this gives the homogeneous solution

$$
u_{c}(t)=e^{-t / 2}\left[c_{1} \cos (\sqrt{255} t / 2)+c_{2} \sin (\sqrt{255} t / 2)\right]
$$

and particular solution

$$
U(t)=(240 / 901) \cos (2 t)+(8 / 901) \sin (2 t)
$$

Since the homogeneous solution dies as $t \rightarrow 0$, the steady state solution is just the particular solution.
3. A car and its suspension system are idealized as a damped spring-mass system, with natural frequency 0.5 Hz and damping coefficient 0.2 . Suppose the car drives at speed V over a road with sinusoidal bumps. Suppose the distance between two bumps is 10 m and the height of a bump 20 cm . At what speed does the maximum amplitude vibration occur and what is the corresponding vibration amplitude? (see figure)

Solution: Let s denote the distance travelled by the car and let L denote the wavelength of the bumps and H the bump amplitude". Then the height of the wheel above the mean road height may be expressed as

$$
y=H \sin \left(\frac{2 \pi s}{l}\right) .
$$

Since the car has speed V, we have $s=V t$, so,

$$
y(t)=H \sin \left(\frac{2 \pi V}{L} t\right)
$$

i.e., the wheel oscillates vertically with sinusoidally at frequency $\frac{2 \pi V}{L}$.

Now the suspension has been idealized as a spring mass system subject to base excitation. The diffeq is thus,

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y^{\prime}=H \sin \left(\frac{2 \pi V}{L} t\right) .
$$

From the formula for amplitude, we have

$$
R=\frac{H}{\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma \omega^{2}}}
$$

where $\omega_{0}=0.5 \mathrm{~Hz}$ (natural frequency) and $\omega=\frac{2 \pi V}{L}$ the forcing frequency. The maximum amplitude therefore, is achieved when $\omega=\omega_{0}$, i.e.,

$$
\omega=\frac{2 \pi V}{L}=\omega_{0} \Longrightarrow V=5 \mathrm{~m} / \mathrm{s}
$$

The amplitude can be found through straightforward substitution to be 50 cm .
Problems in this worksheet are adapted from https://math.uchicago.edu/~ecartee and www.brown.edu/Departments/Engineering/Courses/En4/Notes/vibrations_forced/vibrations_ forced.htm

