\qquad

Review

Higher Order ODEs

- Very generally, an $n^{\text {th }}$ order linear, constant coefficient ODE is written as

$$
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=g(t) .
$$

Here, a_{0}, \ldots, a_{n} are numbers and $a_{n} \neq 0$.

- If $g(t)=0$, we call the ODE homogeneous. Otherwise it is inhomogeneous/nonhomogeneous.
- Just as before, to solve a homogeneous ODE, we first substitute $e^{r t}$ to get the characteristic polynomial equation,

$$
a_{0} r^{n}+a_{1} r^{n-1}+\ldots+a_{n-1} r+a_{n}=0 .
$$

- The above equation has n roots (some may repeat). In general, it is difficult to solve this equation (factor the polynomial) exactly. If it is possible, and the roots are r_{1}, \ldots, r_{n}, we have:

1. For each non-repeated root, r, then the solution corresponding to that root is $c e^{r t}$, where c is an arbitrary constant.
2. Suppose the root r repeats s number of times, then the corresponding solution is $c_{1} e^{r t}+c_{2} t e^{r t}+\ldots+c_{s} t^{s} e^{r t}$.
3. For complex roots (they always appear in conjugate pairs), $r_{ \pm}=a \pm i b$ the corresponding root is $e^{a t}\left(c_{1} \cos b t+c_{2} \sin b t\right)$.

- For inhomogeneous equations, the method of undetermined coefficients can be used to find a particular solution (just like in the $2^{\text {nd }}$ order case).

Practice Problems

1. Example problem: Find the general solution to the following differential equation:

$$
y^{(4)}-2 y^{(3)}+2 y^{\prime \prime}-2 y^{\prime}+y=e^{t}+\cos 2 t
$$

Solution: We compute the characteristic equation as $r^{4}-2 r^{3}+2 r^{2}-2 r+1=0$. Observe that we can write the polynomial as

$$
\begin{aligned}
r^{4}-2 r^{3}+r^{2}+r^{2}-2 r+1 & =r^{2}\left(r^{2}-2 r+1\right)+\left(r^{2}-2 r+1\right) \\
& =\left(r^{2}-2 r+1\right)\left(r^{2}+1\right) \\
& =(r-1)(r-1)(r-i)(r+i)
\end{aligned}
$$

Thus the complementary solution is

$$
y_{c}=c_{1} e^{t}+c_{2} t e^{t}+c_{3} \cos t+c_{4} \sin t .
$$

The first term of the right hand side is e^{t}. Since the root $r=1$ is repeated twice, we multiply the assume $Y_{1}=A t^{2} e^{t}$. Compute the derivatives:

$$
\begin{aligned}
Y_{1}^{\prime} & =A t^{2} e^{t}+2 A t e^{t} \\
Y_{1}^{\prime \prime} & =A t^{2} e^{t}+4 A t e^{t}+2 A e^{t} \\
Y_{1}^{(3)} & =A t^{2} e^{t}+6 A t e^{t}+6 A e^{t} \\
Y_{1}^{(4)} & =A t^{2} e^{t}+8 A t e^{t}+12 A e^{t}
\end{aligned}
$$

Plugging this in to the inhomogeneous equation we get

$$
4 A e^{t}=e^{t} \Longrightarrow A=\frac{1}{4}
$$

For the second term we take $Y_{2}=B \cos 2 t+C \sin 2 t$. The derivatives are

$$
\begin{aligned}
Y_{2}^{\prime} & =-2 B \sin 2 t+2 C \cos 2 t \\
Y_{2}^{\prime \prime} & =-4 B \cos 2 t-4 C \sin 2 t \\
Y_{2}^{(3)} & =8 B \sin 2 t-8 C \cos 2 t \\
Y_{2}^{(4)} & =16 B \cos 2 t+16 C \sin 2 t
\end{aligned}
$$

Plugging in the derivatives and simplifying we get $B=9 / 225$ and $C=12 / 225$. The solution is therefore

$$
y=c_{1} e^{t}+c_{2} t e^{t}+\frac{1}{4} t^{2} e^{t}+c_{3} \cos t+c_{4} \sin t+\frac{1}{225}(9 \cos 2 t+12 \sin 2 t)
$$

2. We are given that the homogeneous solution to a linear constant coefficient ODE is

$$
y=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}+c_{4} e^{-t}+e^{t}\left(c_{5} \cos t+c_{6} \sin t\right)
$$

Find the differential equation.
Solution: By observing the solution, we see that the roots of the equation are $1,1,1,-1,1+i, 1-i$, . The characteristic equation has to be

$$
\begin{aligned}
(r-1)^{3}(r+1)(r-1-i)(r-1+i) & =\left(r^{3}-3 r^{2}+3 r-1\right)(r+1)\left(r^{2}-2 r+2\right) \\
& =r^{6}-4 r^{5}+6 r^{4}-2 r^{3}-5 r^{2}+6 r-2
\end{aligned}
$$

The differential equation is therefore

$$
y^{(6)}-4 y^{(5)}+6 y^{(4)}-2 y^{(3)}-5 y^{\prime \prime}+6 y^{\prime}-y=0
$$

3. Find the general solution to the following ODEs:
(a) $y^{(4)}+2 y^{\prime \prime}+y=0$

Solution: The characteristic equation is $r^{4}+2 r^{2}+1=\left(r^{2}+1\right)^{2}=0$. The roots are $r= \pm i, \pm i$ (repeated). So the solution is

$$
y=c_{1} \cos t+c_{2} \sin t+c_{3} t \cos t+c_{4} t \sin t
$$

(b) $y^{(6)}-y^{\prime \prime}=0$.

Solution: The characteristic equation is $r^{6}-r^{2}=0$. We can factor it as follows:

$$
\begin{aligned}
r^{6}-r^{2} & =r^{2}\left(r^{4}-1\right) \\
& =r^{2}\left(r^{2}+1\right)\left(r^{2}-1\right) \\
& =r^{2}\left(r^{2}+1\right)(r+1)(r-1)=0
\end{aligned}
$$

So the roots are $r=0,0, \pm i, 1,-1$. The corresponding general solution is

$$
y=c_{1}+c_{2} t+c_{3} \cos t+c_{4} \sin t+c_{5} e^{t}+c_{6} e^{-t}
$$

4. Consider a horizontal metal beam of length L subject to a vertical load $f(x)$ per unit length. The resulting vertical displacement in the beam $y(x)$ satisfies a differential equation of the form

$$
A \frac{d^{4} y}{d x^{4}}=f(x)
$$

where A is a constant. Suppose that $f(x)$ is just a constant k, i.e., the equation is simply

$$
A \frac{d^{4} y}{d x^{4}}=k
$$

(a) Find the general solution of this non-homogeneous fourth order equation.

Solution: Although we could solve this equation in the usual way using undetermined coefficients, we can simply integrate the equation 4 times:

$$
y=\frac{k x^{4}}{24 A}+C_{1} x^{3}+C_{2} x^{2}+C_{3} x+C_{4}
$$

(b) Solve the above equation for the boundary condition

$$
y(0)=y^{\prime \prime}(0)=y(L)=y^{\prime \prime}(L)=0 .
$$

Solution: The derivatives of the solution are

$$
\begin{aligned}
y^{\prime} & =\frac{k x^{3}}{6 A}+3 C_{1} x^{2}+2 C_{2} x+C_{3} \\
y^{\prime \prime} & =\frac{k x^{2}}{2 A}+6 C_{1} x+2 C_{2} \\
y^{\prime \prime \prime} & =\frac{k x}{A}+6 C_{1}
\end{aligned}
$$

Plugging in y and $y^{\prime \prime}$ into the boundary condition:

$$
\begin{aligned}
y(0) & =C_{4}=0 \\
y^{\prime \prime}(0) & =2 C_{2}=0 \\
y(L) & =\frac{k L^{4}}{24 A}+C_{1} L^{3}+C_{2} L^{2}+C_{3} L+C_{4}=0 \\
y^{\prime \prime}(L) & =\frac{k L^{2}}{2 A}+6 C_{1} L+2 C_{2}=0
\end{aligned}
$$

The first two equations just say that $C_{2}=C_{4}=0$. This simplifies the other two equations:

$$
\begin{gathered}
\frac{k L^{4}}{24 A}+C_{1} L^{3}+C_{3} L=0 \\
\frac{k L^{2}}{2 A}+6 C_{1} L=0
\end{gathered}
$$

Solving the second equation gives

$$
C_{1}=\frac{-k L}{12 A}
$$

and solving C_{3} gives

$$
C_{3}=\frac{k L^{3}}{24 A}
$$

Plugging in all the constants,

$$
y=\frac{k}{24 A}\left(x^{4}-2 L x^{3}+L^{3} x\right)
$$

(c) Solve the above equation for the boundary condition

$$
y(0)=y^{\prime}(0)=y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0 .
$$

Solution: Plugging in the derivatives into the boundary conditions:

$$
\begin{aligned}
& y(0)=C_{4}=0 \\
& y^{\prime}(0)=C_{3}=0 \\
& y^{\prime \prime}(L)=\frac{k L^{2}}{2 A}+6 C_{1} L+2 c_{2}=0 \\
& y^{\prime \prime \prime}(L)=\frac{k l}{A}+6 C_{1}=0
\end{aligned}
$$

Solving, we get $C_{1}=\frac{-k L}{6 A}, C_{2}=\frac{k L^{2}}{4 A}$ so the solution is

$$
y=\frac{k}{24 A}\left(x^{4}-4 L x^{3}+6 L^{2} x^{2}\right)
$$

