\qquad

Review

Higher Order ODEs

- Very generally, an $n^{\text {th }}$ order linear, constant coefficient ODE is written as

$$
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\ldots+a_{n-1} y^{\prime}+a_{n} y=g(t) .
$$

Here, a_{0}, \ldots, a_{n} are numbers and $a_{n} \neq 0$.

- If $g(t)=0$, we call the ODE homogeneous. Otherwise it is inhomogeneous/nonhomogeneous.
- Just as before, to solve a homogeneous ODE, we first substitute $e^{r t}$ to get the characteristic polynomial equation,

$$
a_{0} r^{n}+a_{1} r^{n-1}+\ldots+a_{n-1} r+a_{n}=0 .
$$

- The above equation has n roots (some may repeat). In general, it is difficult to solve this equation (factor the polynomial) exactly. If it is possible, and the roots are r_{1}, \ldots, r_{n}, we have:

1. For each non-repeated root, r, then the solution corresponding to that root is $c e^{r t}$, where c is an arbitrary constant.
2. Suppose the root r repeats s number of times, then the corresponding solution is $c_{1} e^{r t}+c_{2} t e^{r t}+\ldots+c_{s} t^{s} e^{r t}$.
3. For complex roots (they always appear in conjugate pairs), $r_{ \pm}=a \pm i b$ the corresponding root is $e^{a t}\left(c_{1} \cos b t+c_{2} \sin b t\right)$.

- For inhomogeneous equations, the method of undetermined coefficients can be used to find a particular solution (just like in the $2^{\text {nd }}$ order case).

Practice Problems

1. Example problem: Find the general solution to the following differential equation:

$$
y^{(4)}-2 y^{(3)}+2 y^{\prime \prime}-2 y^{\prime}+y=e^{t}+\cos 2 t
$$

2. We are given that the homogeneous solution to a linear constant coefficient ODE is

$$
y=c_{1} e^{t}+c_{2} t e^{t}+c_{3} t^{2} e^{t}+c_{4} e^{-t}+e^{t}\left(c_{5} \cos t+c_{6} \sin t\right) .
$$

Find the differential equation.
3. Find the general solution to the following ODEs:
(a) $y^{(4)}+2 y^{\prime \prime}+y=0$
(b) $y^{(6)}-y^{\prime \prime}=0$.
4. Consider a horizontal metal beam of length L subject to a vertical load $f(x)$ per unit length. The resulting vertical displacement in the beam $y(x)$ satisfies a differential equation of the form

$$
A \frac{d^{4} y}{d x^{4}}=f(x)
$$

where A is a constant. Suppose that $f(x)$ is just a constant k, i.e., the equation is simply

$$
A \frac{d^{4} y}{d x^{4}}=k
$$

(a) Find the general solution of this non-homogeneous fourth order equation.
(b) Solve the above equation for the boundary condition

$$
y(0)=y^{\prime \prime}(0)=y(L)=y^{\prime \prime}(L)=0 .
$$

(c) Solve the above equation for the boundary condition

$$
y(0)=y^{\prime}(0)=y^{\prime \prime}(L)=y^{\prime \prime \prime}(L)=0 .
$$

