Prelim Review
Fall MATH 2930

Name: \qquad
04 November 2021

1. Consider the following differential equation:

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+5 y=g(t)
$$

(a) Find the homogeneous/complementary solution (i.e. $g(t)=0$)

Solution: The homogeneous solution is $y_{c}(t)=A e^{t} \cos 2 t+B e^{t} \sin 2 t$.
(b) Suppose $g(t)=e^{t} \sin (2 t)$. Find the particular solution. What is the steady state solution?
Solution: We guess the particular solution to be

$$
Y=t e^{t}[A \sin 2 t+B \cos 2 t]
$$

The derivatives are

$$
\begin{gathered}
Y^{\prime}=t e^{t}[(A-2 b) \sin 2 t+(2 A+B) \cos 2 t]+e^{t}[A \sin 2 t+B \cos 2 t] \\
Y^{\prime \prime}=t e^{t}[(-3 A-4 B) \sin 2 t+(4 A-3 B) \cos 2 t]+e^{t}[-4 B \sin 2 t+(4 A+2 B) \cos 2 t]
\end{gathered}
$$

Plugging in the particular solution into the inhomogeneous solution, we get

$$
e^{t}[(-4 B-2 A) \sin 2 t+(4 A) \cos 2 t]=e^{t} \sin 2 t
$$

Thus $-4 B-2 A=1$ and $4 A=0$ i.e. $A=0$ and $B=-1 / 4$. The particular solution is

$$
Y=-\frac{1}{4} t e^{t} \cos 2 t
$$

(c) What would the guess for the particular solution be if $g(t)=e^{3 t} \sin (2 t)$ instead? (No need to find the undetermined coefficients).
Solution: In this case, we simply make the guess $Y=e^{3 t}(A \sin 2 t+B \cos 2 t)$.
2. Consider the two coupled differential equations:

$$
u_{1}^{\prime \prime}+5 u_{1}=2 u_{2} \quad u_{2}^{\prime \prime}+2 u_{2}=2 u_{1}
$$

Here, 'coupled' means that the differential equation for u_{1} has u_{2} terms and vice versa.
(a) Express the two 2nd order equations above as a single 4th order equation involving only u_{1}. Hint: Try to express u_{2} in terms of u_{1} using the second equation and plug it into the first.

Solution: $u_{1}^{(4)}+27 u_{1}^{\prime \prime}+6 u_{1}=0$.
(b) Find the general solution to the 4th order equation you found above with the initial conditions

$$
u_{1}(0)=1 \quad u_{1}^{\prime}(0)=0 \quad u_{2}(0)=2 \quad u_{2}^{\prime}(0)=0
$$

Solution: Roots: $\pm i$ and $\pm \sqrt{6} i$. So $u_{1}(t)=A \cos t+B \sin t+C \cos \sqrt{6} t+$ $D \sin \sqrt{6} t$.

$$
\begin{gathered}
u_{1}^{\prime}(t)=-A \sin t+B \cos t-\sqrt{6} C \sin \sqrt{6} t+\sqrt{6} D \cos \sqrt{6} t \\
u_{1}^{\prime \prime}(t)=-A \cos t-B \sin t-6 C \cos \sqrt{6} t-6 D \sin \sqrt{6} t
\end{gathered}
$$

Compute u_{2} and u_{2}^{\prime} :

$$
\begin{gathered}
u_{2}(t)=\frac{1}{2}(4 A \cos t+4 B \sin t-C \cos \sqrt{6} t-D \sin \sqrt{6} t) \\
u_{2}^{\prime}(t)=\frac{1}{2}(-4 A \sin t+4 B \cos t+\sqrt{6} C \sin \sqrt{6} t-\sqrt{6} D \cos \sqrt{6} t)
\end{gathered}
$$

Plugging in the initial conditions:

$$
\begin{gathered}
A+C=1 \\
B+\sqrt{6} D=0 \\
2 A-\frac{C}{2}=2 \\
4 B-\sqrt{6} D=0
\end{gathered}
$$

Solving these, we get $A=1, B=C=D=0$.
3. Assume that the system described by the equation

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0
$$

is critically damped and that the initial conditions are $u(0)=u_{0}, u^{\prime}(0)=v_{0}$.
(a) If $v_{0}=0$ and $u_{0} \neq 0$ show that $u \rightarrow 0$ as $t \rightarrow \infty$ but that u is never zero.

Solution: $u(t)=c_{1} e^{-\gamma / 2 m t}+c_{2} t e^{-\gamma / 2 m t}$. Using the initial conditions

$$
u(t)=u_{0} e^{-\gamma / 2 m t}+\left(v_{0}+\frac{\gamma}{2 m} u_{0}\right) t e^{-\gamma / 2 m t}
$$

If $v_{0}=0$, the solution simplifies to

$$
u(t)=u_{0}\left(1+\frac{\gamma}{2 m} t\right) e^{-\gamma / 2 m t}
$$

Then

$$
\lim _{t \rightarrow \infty} u(t)=0
$$

(Lopital's rule)
However, for any finite $t, u(t) \neq 0$. This is because the exponential term is always positive and $\left(1+\frac{\gamma}{2 m} t\right) \neq 0$ for any non-zero t.
(b) Assuming $u_{0}>0$, determine a condition on v_{0} that will ensure that the mass passes through its equilibrium once released.
Solution: Recall that

$$
u(t)=u_{0} e^{-\gamma / 2 m t}+\left(v_{0}+\frac{\gamma}{2 m} u_{0}\right) t e^{-\gamma / 2 m t}
$$

Factor out the exponential so that

$$
u(t)=\left[u_{0}+\left(v_{0}+\frac{\gamma}{2 m} u_{0}\right) t\right] e^{-\gamma / 2 m t}
$$

We want a condition so that there is some $\tau>0$ for which $u(\tau)=0$. Since the exponential is always positive, the only way this is possible is if

$$
u_{0}+\left(v_{0}+\frac{\gamma}{2 m} u_{0}\right) \tau=0 \Longrightarrow \tau=\frac{-u_{0}}{v_{0}+\frac{\gamma}{2 m} u_{0}}
$$

4. A car and its suspension system are idealized as a damped spring-mass system, with natural frequency 0.5 Hz and damping coefficient 0.2 . Suppose the car drives at speed V over a road with sinusoidal bumps. Suppose the distance between two bumps is 10 m and the height of a bump 20 cm . At what speed does the maximum amplitude vibration occur and what is the corresponding vibration amplitude? (see figure)

Solution: Let s denote the distance travelled by the car and let L denote the wavelength of the bumps and H the bump amplitude". Then the height of the wheel above the mean road height may be expressed as

$$
y=H \sin \left(\frac{2 \pi s}{l}\right)
$$

Since the car has speed V, we have $s=V t$, so,

$$
y(t)=H \sin \left(\frac{2 \pi V}{L} t\right)
$$

i.e., the wheel oscillates vertically with sinusoidally at frequency $\frac{2 \pi V}{L}$.

Now the suspension has been idealized as a spring mass system subject to base excitation. The diffeq is thus,

$$
m y^{\prime \prime}+\gamma y^{\prime}+k y^{\prime}=H \sin \left(\frac{2 \pi V}{L} t\right)
$$

From the formula for amplitude, we have

$$
R=\frac{H}{\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma \omega^{2}}}
$$

where $\omega_{0}=0.5 \mathrm{~Hz}$ (natural frequency) and $\omega=\frac{2 \pi V}{L}$ the forcing frequency. The maximum amplitude therefore, is achieved when $\omega=\omega_{0}$, i.e.,

$$
\omega=\frac{2 \pi V}{L}=\omega_{0} \Longrightarrow V=5 \mathrm{~m} / \mathrm{s}
$$

The amplitude can be found through straightforward substitution to be 50 cm .

