Prelim Review

Fall MATH 2930

Name:

04 November 2021

1. Consider the following differential equation:

$$
\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+5 y=g(t)
$$

(a) Find the homogeneous/complementary solution (i.e. $g(t)=0$)
(b) Suppose $g(t)=e^{t} \sin (2 t)$. Find the particular solution. What is the steady state solution?
(c) What would the guess for the particular solution be if $g(t)=e^{3 t} \sin (2 t)$ instead? (No need to find the undetermined coefficients).
2. Consider the two coupled differential equations:

$$
u_{1}^{\prime \prime}+5 u_{1}=2 u_{2} \quad u_{2}^{\prime \prime}+2 u_{2}=2 u_{1}
$$

Here, 'coupled' means that the differential equation for u_{1} has u_{2} terms and vice versa.
(a) Express the two 2nd order equations above as a single 4th order equation involving only u_{1}. Hint: Try to express u_{2} in terms of u_{1} using the second equation and plug it into the first.
(b) Find the general solution to the 4th order equation you found above with the initial conditions

$$
u_{1}(0)=1 \quad u_{1}^{\prime}(0)=0 \quad u_{2}(0)=2 \quad u_{2}^{\prime}(0)=0 .
$$

3. Assume that the system described by the equation

$$
m u^{\prime \prime}+\gamma u^{\prime}+k u=0
$$

is critically damped and that the initial conditions are $u(0)=u_{0}, u^{\prime}(0)=v_{0}$.
(a) If $v_{0}=0$ and $u_{0} \neq 0$ show that $u \rightarrow 0$ as $t \rightarrow \infty$ but that u is never zero.
(b) Assuming $u_{0}>0$, determine a condition on v_{0} that will ensure that the mass passes through its equilibrium once released.
4. A car and its suspension system are idealized as a damped spring-mass system, with natural frequency 0.5 Hz and damping coefficient 0.2 . Suppose the car drives at speed V over a road with sinusoidal bumps. Suppose the distance between two bumps is 10 m and the height of a bump 20 cm . At what speed does the maximum amplitude vibration occur and what is the corresponding vibration amplitude? (see figure)

