\qquad

Review

Two Point Boundary Value Problems

- A two point boundary value problem (bvp) is typically of the form

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \\
y(\alpha)=y_{0} \quad y(\beta)=y_{1}
\end{gathered}
$$

where α and β are two points on the domain.

- The important thing to note is that instead of specifying y and y^{\prime} at the same point, we specify only y but at two different points.
- A 2-point bvp is homogeneous, if $g(t)=0$ and $y_{0}=y_{1}=0$, otherwise it is nonhomogeneous (note that unlike before, the definition also depends on the boundary values).
- Consider the homogeneous 2 point bvp

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0 \quad y(\pi)=0
$$

- $y=0$ is called a trivial solution and every other solution is called nontrivial.
- If for some value of λ, there is a nontrivial solution y, then we say that λ is an eigenvalue and y is an eigenfunction.
- If $\lambda>0$, the eigenvalues are n^{2} and the eigenfunctions are $\sin (n x)$ respectively (n is a natural number). Thus there are infinitely many eigenvalues and eigenfunctions
- If $\lambda \leq 0$, there are no eigenvalues or eigenvectors.

Fourier Series

- A function, f is periodic with period $T>0$ if for any x :

$$
f(x+T)=f(x)
$$

- The fundamental period of a periodic function is the smallest T with the above property.
- Let f and g be two functions on $[-L, L]$. The inner product of f and g, denoted (f, g) is

$$
(f, g)=\int_{-L}^{L} f(x) g(x) d x
$$

- If $(f, g)=0$, we say that f and g are orthogonal.
- The functions $\cos \left(\frac{m \pi}{L} x\right)$ and $\sin \left(\frac{m \pi}{L} x\right)$ are very important to us.
- $\cos \left(\frac{m \pi}{L} x\right)$ and $\cos \left(\frac{n \pi}{L} x\right)$ are orthogonal (except when $m=n$):

$$
\int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x= \begin{cases}0 & m \neq n \\ L & m=n\end{cases}
$$

- $\sin \left(\frac{m \pi}{L} x\right)$ and $\sin \left(\frac{n \pi}{L} x\right)$ are orthogonal (except when $m=n$):

$$
\int_{-L}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) d x= \begin{cases}0 & m \neq n \\ L & m=n\end{cases}
$$

- $\cos \left(\frac{m \pi}{L} x\right)$ and $\sin \left(\frac{n \pi}{L} x\right)$ are orthogonal for all m and n :

$$
\int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) d x=0
$$

- Let f be a function on $[-L, L]$. Its Fourier series is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left[a_{m} \cos \left(\frac{m \pi}{L} x\right)+b_{m} \sin \left(\frac{m \pi}{L} x\right)\right]
$$

- the constants, a_{n}, b_{k} with $n=0,1,2, \ldots$ and $k=1,2,3, \ldots$ are given by:

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \quad b_{k}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

Practice Problems

1. Find the first four terms in the Fourier series $\left(a_{0}, b_{1}, a_{1}, b_{2}\right)$ of the following functions on the interval $[-\pi, \pi]$:
(a) $f(x)=1$ (constant function)

Solution: Since the function is defined on $[-\pi, \pi]$, we have $L=\pi$. Let's compute the coefficients:

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 d x=\frac{1}{\pi} 2 \pi=2 . \\
b_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \sin (\pi x / \pi) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin x d x=-\frac{1}{\pi}[\cos (\pi)-\cos (-\pi)]=0 \\
a_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cos (\pi x / \pi) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos x d x=\frac{1}{\pi}[\sin (\pi)-\sin (-\pi)]=0 \\
b_{2}=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \sin (2 \pi x / \pi) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin 2 x d x=-\frac{1}{2 \pi}[\cos (2 \pi)-\cos (-2 \pi)]=0
\end{gathered}
$$

So the Fourier series is simply 1 (as expected).
(b) $f(x)=x$

Solution: Compute the coefficients

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{p i} x d x=0 \\
b_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} x \sin ((\pi x / \pi) d x=2 \\
a_{1}=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \cos (\pi x / \pi) d x=0 \\
b_{2}=\frac{1}{\pi} \int_{-\pi}^{\pi} 1 \sin (\pi x / \pi) d x=-1
\end{gathered}
$$

So the Fourier series is $2 \sin (x)-\sin (2 x)+\ldots$.
(c) $f(x)=\cos (x)$

Solution:

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{p i} \cos (x) d x=0 \\
b_{1}=\frac{1}{\pi} \int_{-\pi}^{p i} \cos (x) \sin (x) d x=\frac{1}{2 \pi} \int_{-\pi}^{p i} \sin (2 x) d x=0
\end{gathered}
$$

$$
\begin{aligned}
a_{1} & =\frac{1}{\pi} \int_{-\pi}^{p i} \cos (x) \cos (x) d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{p i} \frac{1+\cos (2 x)}{2} d x \\
& =\frac{1}{2 \pi}\left[\pi+\frac{1}{2} \int_{-\pi}^{\pi} \cos (2 x) d x\right] \\
& =1 \\
b_{2}=\frac{1}{\pi} \int_{-\pi}^{p i} \cos (x) & \sin (2 x) d x=\frac{1}{2 \pi} \int_{\pi}^{\pi} \sin (3 x)+\sin (x) d x=0
\end{aligned}
$$

So, as expected the Fourier series is simply $\cos (x)$.
2. Either solve the bvp

$$
y^{\prime \prime}+4 y=\cos x \quad y^{\prime}(0)=0 \quad y^{\prime}(\pi)=0
$$

or show that it has no solution. (Notice that instead of specifying y at the two points, we specified y^{\prime}, but this is still a 2 -point bvp)
Solution: By using undetermined coefficients, we get the following general solution

$$
y(x)=c_{1} \cos (2 x)+c_{2} \sin (2 x)+\frac{1}{3} \cos (x)
$$

Differentiating yields,

$$
y^{\prime}(x)=-2 c_{1} \sin (2 x)+2 c_{2} \cos (2 x)-\frac{1}{3} \sin (x)
$$

Now,

$$
y^{\prime}(0)=-2 c_{1} \sin (0)+2 c_{2} \cos (0)-\frac{1}{3} \sin (0)=2 c_{2}=0,
$$

so that $c_{2}=0$. The second boundary condition gives

$$
y^{\prime}(\pi)=-2 c_{1} \sin (2 \pi)-\frac{1}{3} \sin (2 \pi)=0
$$

The above is true regardless o the value of c_{1}, hence we have infinitely many solutions given by

$$
y(x)=c_{1} \cos (2 x)+\frac{1}{3} \cos (x) .
$$

3. Find all the eigenvalues and eigenfunctions of the bvp:

$$
y^{\prime \prime}+\lambda y=0 \quad y^{\prime}(0)=0 \quad y^{\prime}(\pi)=0 .
$$

(assuming all eigenvalues are real).

Solution: We focus on three regimes, $\lambda>0, \lambda=0$ and $\lambda<0$.
$\lambda=0$:
We have the equation $y^{\prime \prime}=0$, and integrating twice gives $y(x)=c_{1}+c_{2} x$, where c_{1} and c_{2} are constants of integration. The derivative is simply $y^{\prime}(x)=c_{2}$. By enforcing $y^{\prime}(0)=0$, we get $c_{2}=0$. The second boundary condition tells us nothing interesting, so the eigenfunctions are $y(x)=c_{1}\left(c_{1} \neq 0\right)$. We avoid $c_{1}=0$, since this would be a trivial solution. The corresponding eigenvalue is 0 .
$\lambda>0$:
For convenience we say $\lambda=\mu^{2}, \mu \neq 0$. Then our differential equation is

$$
y^{\prime \prime}+\mu^{2} y=0
$$

The general solution is the all too familiar

$$
y(x)=A \cos (\mu x)+B \sin (\mu x) .
$$

Taking the derivative yields

$$
y^{\prime}(x)=-A \mu \sin (\mu x)+B \mu \cos (\mu x) .
$$

Enforcing the first boundary condition yields,

$$
y^{\prime}(0)=0=-A \mu \sin (0)+B \mu \cos (0)=B \mu .
$$

therefore $B=0$ (since we have assumed that $\mu \neq 0$). The boundary condition gives

$$
y^{\prime}(\pi)=0=-A \mu \sin (\mu \pi) .
$$

We want non-trivial solutions, so instead of taking $c_{5}=0$, we can look at values of μ for which $\sin (\mu x)=0$. This happens for any integer μ, so the eigenvalues are $\lambda=\mu^{2}=1,4,9,16, \ldots$ and the corresponding eigenfunctions are $\cos (n x)$.
$\lambda<0$:
Let's write $\lambda=-\mu^{2}, \mu \neq 0$. Then we have

$$
y^{\prime \prime}-\mu^{2} y=0
$$

The general solution is of the form

$$
y(x)=C e^{-\mu x}+D e^{\mu x}
$$

and derivative

$$
y^{\prime}(x)=-C \mu e^{\mu x}+D \mu e^{\mu x}
$$

The first boundary condition says that $y^{\prime}(0)=0=-C \mu+D \mu$ thus $C=D$. The second boundary condition says $y^{\prime}(\pi)=D \mu\left(e^{\mu \pi}-e^{-\mu \pi}\right)$. Since the term in brackets cannot be zero, C must be equal to zero. Thus, $\lambda<0$ cannot be an eigenvalue since the all the solutions are trivial.

