\qquad

Review

Two Point Boundary Value Problems

- A two point boundary value problem (bvp) is typically of the form

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \\
y(\alpha)=y_{0} \quad y(\beta)=y_{1}
\end{gathered}
$$

where α and β are two points on the domain.

- The important thing to note is that instead of specifying y and y^{\prime} at the same point, we specify only y but at two different points.
- A 2-point bvp is homogeneous, if $g(t)=0$ and $y_{0}=y_{1}=0$, otherwise it is nonhomogeneous (note that unlike before, the definition also depends on the boundary values).
- Consider the homogeneous 2 point bvp

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=0 \quad y(\pi)=0
$$

- $y=0$ is called a trivial solution and every other solution is called nontrivial.
- If for some value of λ, there is a nontrivial solution y, then we say that λ is an eigenvalue and y is an eigenfunction.
- If $\lambda>0$, the eigenvalues are n^{2} and the eigenfunctions are $\sin (n x)$ respectively (n is a natural number). Thus there are infinitely many eigenvalues and eigenfunctions
- If $\lambda \leq 0$, there are no eigenvalues or eigenvectors.

Fourier Series

- A function, f is periodic with period $T>0$ if for any x :

$$
f(x+T)=f(x)
$$

- The fundamental period of a periodic function is the smallest T with the above property.
- Let f and g be two functions on $[-L, L]$. The inner product of f and g, denoted (f, g) is

$$
(f, g)=\int_{-L}^{L} f(x) g(x) d x
$$

- If $(f, g)=0$, we say that f and g are orthogonal.
- The functions $\cos \left(\frac{m \pi}{L} x\right)$ and $\sin \left(\frac{m \pi}{L} x\right)$ are very important to us.
- $\cos \left(\frac{m \pi}{L} x\right)$ and $\cos \left(\frac{n \pi}{L} x\right)$ are orthogonal (except when $m=n$):

$$
\int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x= \begin{cases}0 & m \neq n \\ L & m=n\end{cases}
$$

- $\sin \left(\frac{m \pi}{L} x\right)$ and $\sin \left(\frac{n \pi}{L} x\right)$ are orthogonal (except when $m=n$):

$$
\int_{-L}^{L} \sin \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) d x= \begin{cases}0 & m \neq n \\ L & m=n\end{cases}
$$

- $\cos \left(\frac{m \pi}{L} x\right)$ and $\sin \left(\frac{n \pi}{L} x\right)$ are orthogonal for all m and n :

$$
\int_{-L}^{L} \cos \left(\frac{m \pi}{L} x\right) \sin \left(\frac{n \pi}{L} x\right) d x=0
$$

- Let f be a function on $[-L, L]$. Its Fourier series is given by

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty}\left[a_{m} \cos \left(\frac{m \pi}{L} x\right)+b_{m} \sin \left(\frac{m \pi}{L} x\right)\right]
$$

- the constants, a_{n}, b_{k} with $n=0,1,2, \ldots$ and $k=1,2,3, \ldots$ are given by:

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x \quad b_{k}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi}{L} x\right) d x
$$

Practice Problems

1. Find the first four terms in the Fourier series $\left(a_{0}, b_{1}, a_{1}, b_{2}\right)$ of the following functions on the interval $[-\pi, \pi]$:
(a) $f(x)=1$ (constant function)
(b) $f(x)=x$
(c) $f(x)=\cos (x)$
2. Either solve the bvp

$$
y^{\prime \prime}+4 y=\cos x \quad y^{\prime}(0)=0 \quad y^{\prime}(\pi)=0
$$

or show that it has no solution. (Notice that instead of specifying y at the two points, we specified y^{\prime}, but this is still a 2 -point bvp)
3. Find all the eigenvalues and eigenfunctions of the bvp:

$$
y^{\prime \prime}+\lambda y=0 \quad y^{\prime}(0)=0 \quad y^{\prime}(\pi)=0
$$

(assuming all eigenvalues are real).

