
§10.3,10.4,10.5 Name:
Fall MATH 2930 18 November 2021

Review

Fourier Series (contd.)

• f is a piece-wise continuous on [a, b] if it can be broken into finitely many ‘pieces’ each
of which is continuous. This kind of function can have ‘jumps’.

• Fourier convergence theorem: If f is piece-wise continuous on [−L,L] and it is periodic
with period 2L outside [−L,L], then the Fourier series (evaluated at x) converges to
f(x) wherever f is continuous. Wherever f has a jump, the Fourier series converges
to the midpoint of the jump.

• Even function: f(−x) = f(x) Odd function: f(−x) = −f(x)

• If f is even on [−L,L], the Fourier series will only have cosine terms (and the constant
term since it is technically also a cosine term):

f(x) =
a0
2

+
∞∑
n=1

an cos
(nπx
L

)
.

• If f is odd on [−L,L], the Fourier series will only have sine terms:

f(x) =
∞∑
n=1

bn cos
(nπx
L

)
.

• Other facts about even and odd functions:

– Sums and differences of even (odd) functions are even (odd),

– Product (or quotient) of two even functions (two odd functions) is even,

– Product (or quotient) of an even and odd function is odd.

• If f is even on [−L,L], then
∫ L
−L f(x)dx = 2

∫ L
0
f(x)dx.

If f is odd on [−L,L], then
∫ L
−L f(x)dx = 0.

• Periodic extensions of functions: Let f(x) be defined on [0, L]

1. Even function with period 2L:

feven =

{
f(x) 0 ≤ x ≤ L

f(−x) −L ≤ x < 0
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2. Odd function with period 2L:

fodd =


f(x) 0 < x < L

0 x = 0, L

−f(−x) −L < x < 0

The Heat Equation

• The heat equation has the form:

α2∂
2u

∂x2
=
∂u

∂t
, 0 < x < L, t > 0

where α2 is a constant called thermal diffusivity.

• At t = 0, we prescribe an initial temperature distribution:

u(x, 0) = f(x), 0 ≤ x ≤ L

and we also have a 2-point boundary condition in x:

u(0, t) = 0, u(L, t) = 0, t > 0.

• Separation of Variables: we make the guess that the solution to the above equation is
of the form

u(x, t) = X(x)T (t)

• Plugging in and solving the resulting 2-point boundary value problem gives

un(x, t) = e−n
2π2α2t/L2

sin
(nπx
L

)
, n = 1, 2, 3, ...

• The general solution is an infinite series:

u(x, t) =
∞∑
n=1

cnun(x, t)

where

cn =
2

L

∫ L

0

f(x) sin
(nπx
L

)
dx.
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Practice Problems

1. Indicate whether the following functions are even, odd or neither:

(a) sin(x) on [−π, π]

(b) cos(x) on [−π, π]

(c) ex on [−5, 5]

(d)

f(x) =

{
x2 0 ≤ x ≤ 1

−x2 −1 ≤ x < 0

(e)

f(x) =

{
x2 + 1 0 ≤ x ≤ 1

−x2 − 1 −1 ≤ x < 0

2. A function is defined on [0, π] by

f(x) =

{
x 0 ≤ x ≤ π/2

0 π/2 < x ≤ π

(a) Sketch the even periodic extension of f(x) on the interval (−3π, 3π) on the axes
below. Label important points on the x and y axes:

3



Solution:

(b) Sketch the odd periodic extension of f(x) on the interval (−3π, 3π) on the axes
below. Label important points on the x and y axes:
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Solution:

(c) Without doing any calculations, what value does the Fourier Cosine series of f(x)
converge to at x = 3π/2?

Solution: The Fourier Cosine series converges to the even periodic extension of
the function. We notice that the function has a discontinuity at 3π/2, thus the
series converges to the average value of the jump i.e.,

0 + π/2

2
=
π

4

(d) f(x) can be written as a Fourier Sine series,

f(x) =
∞∑
n=1

bn sin(nx).

Find the coefficients, bn.

Solution: To compute the sine series, we use the odd extension:

f(x) =


0 −π ≤ x ≤ −π

2

x −π
2
≤ x ≤ π

2

0 −π
2
≤ x < π

Let’s compute the coefficients:

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

1

π

∫ π/2

−π/2
x sin(nx)dx =

∫ π/2

0

x sin(nx)dx
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where in the last step we used the fact that the product of two odd functions (x
and sin(nx)) is even.

Integrating by parts, we get

bn = − 1

n
cos (nπ/2) +

2

n2π
sin (nπ/2) .

3. Heat equation with insulated ends:
Consider a thin pipe placed along the x-axis with ends at x = 0 and x = π. The pipe
is filled with water and a small amount of a certain chemical. The chemical spreads
(diffuses) through the pipe and the concentration of the chemical at location x and
time t denoted u(x, t) satisfies the equation

∂2u

∂x2
=
∂u

∂t

Initially the concentration has the following distribution

u(x, 0) = x 0 ≤ x ≤ π

The ends of the pipe are closed, so the chemical cannot escape. This can be written as

ux(0, t) = 0 ux(π, t) t ≥ 0

(a) Assume that u(x, t) = X(x)T (t) and find ODEs satisfied by X and T .

Solution:

X(x)T ′(t) = X ′′(x)T (t) =⇒ T ′(t)

T (t)
=
X ′′(x)

X(x)
.

Since the left-hand side depends only on t and the left depends only on x, both
have to equal a constant, λ:

X ′′(x)− λX(x) = 0

T ′(t)− λT (t) = 0

(b) Use the boundary conditions for u to derive boundary conditions for X(x).

Solution:
ux(0, t) = ux(π, t) = 0

so we have
X ′(0)T (t) = 0 X ′(π)T (t) = 0

If T (t) = 0 everywhere, the solution would be trivial, so we assume this is not the
case. Thus it must be that

X ′(0) = X ′(π) = 0.
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(c) Solve the resulting eigenvalue problem for X(x).

Solution: Let’s break down the problem into three different cases.

λ > 0:
In this case, the general solution is

X(x) = C1 cosh(
√
λx) + C2 sinh(

√
λx),

Plugging in the initial conditions in this case simply gives C1 = C2 = 0.

λ = 0:
In this case, we get X(x) = C1x + C2. Plugging in the initial conditions we get
C1 = 0 and arbitrary C2 (but we can take C2 = 1). So the eigenvalue is λ0 = 0
and the eigenfunction is X0 = 1.

λ < 0:
Let λ = −µ2 and we get

X(x) = C1 cos(µx) + C2 sin(µx).

Plugging in the initial conditions we get C2 = 0 and sin(µπ) = 0. Thus µ = n
i.e. the eigenvalues are λn = −n2 and the corresponding eigenfunctions are Xn =
cos(nx).

(d) For each eigenvalue you found, solve the corresponding ODE for T .

Solution: For λ0 = 0, the ODE for T0 is given by

T ′0(t) = 0

We denote the solution by T0 since it corresponds to λ0. We thus have T0 = C0

for some constant C0.

For λn = −n2, the ODE is T ′n = −n2Tn so Tn = Cne
−n2t, for some constant Cn.

(e) Take linear combinations of all the fundamental solutions un(x, t) to get the gen-
eral solution u(x, t) of this heat equation.

Solution: For λ0, u0(x, t) = C0/2 (the factor of half is optional, but it simplifies
a calculation in the next part). For λn, un(x, t) = Cn cos(nx)e−n

2t and

u(x, t) =
∞∑
n=0

un(x, t) =
C0

2
+
∞∑
n=1

Cn cos(nx)e−n
2t.

(f) Finally, use the initial condition to find the coefficients Cn.

Solution: Plug in t = 0 into the general solution:

u(x, 0) = x =
C0

2
+
∞∑
n=1

Cn cos(nx) x ∈ [0, π]
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This is just the cosine series expansion for f(x) = x. We need to evenly extend
f(x) on [−π, π], so we define f(x) = −x for x ∈ [−π, 0). In other words, we take
f(x) = |x| on [−π, π]. We can now compute the coefficients:

C0 =
2

π

∫ π

0

xdx = π

Cn =
2

π

∫ π

0

x cos(nx)dx =
2

n2π
[(−1)n − 1].

Thus the final answer is

u(x, t) =
π

2
+
∞∑
n=1

2

n2π
[(−1)n − 1] cos(nx)e−n

2t
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