## $\S 10.3,10.4,10.5$

Fall MATH 2930
Name: $\qquad$

## Review

## Fourier Series (contd.)

- $f$ is a piece-wise continuous on $[a, b]$ if it can be broken into finitely many 'pieces' each of which is continuous. This kind of function can have 'jumps'.
- Fourier convergence theorem: If $f$ is piece-wise continuous on $[-L, L]$ and it is periodic with period $2 L$ outside $[-L, L]$, then the Fourier series (evaluated at $x$ ) converges to $f(x)$ wherever $f$ is continuous. Wherever $f$ has a jump, the Fourier series converges to the midpoint of the jump.
- Even function: $f(-x)=f(x)$ Odd function: $f(-x)=-f(x)$
- If $f$ is even on $[-L, L]$, the Fourier series will only have cosine terms (and the constant term since it is technically also a cosine term):

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

- If $f$ is odd on $[-L, L]$, the Fourier series will only have sine terms:

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \cos \left(\frac{n \pi x}{L}\right) .
$$

- Other facts about even and odd functions:
- Sums and differences of even (odd) functions are even (odd),
- Product (or quotient) of two even functions (two odd functions) is even,
- Product (or quotient) of an even and odd function is odd.
- If $f$ is even on $[-L, L]$, then $\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x$.

If $f$ is odd on $[-L, L]$, then $\int_{-L}^{L} f(x) d x=0$.

- Periodic extensions of functions: Let $f(x)$ be defined on $[0, L]$

1. Even function with period $2 L$ :

$$
f_{\mathrm{even}}= \begin{cases}f(x) & 0 \leq x \leq L \\ f(-x) & -L \leq x<0\end{cases}
$$

2. Odd function with period $2 L$ :

$$
f_{\text {odd }}= \begin{cases}f(x) & 0<x<L \\ 0 & x=0, L \\ -f(-x) & -L<x<0\end{cases}
$$

## The Heat Equation

- The heat equation has the form:

$$
\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}, \quad 0<x<L, \quad t>0
$$

where $\alpha^{2}$ is a constant called thermal diffusivity.

- At $t=0$, we prescribe an initial temperature distribution:

$$
u(x, 0)=f(x), \quad 0 \leq x \leq L
$$

and we also have a 2-point boundary condition in $x$ :

$$
u(0, t)=0, \quad u(L, t)=0, \quad t>0 .
$$

- Separation of Variables: we make the guess that the solution to the above equation is of the form

$$
u(x, t)=X(x) T(t)
$$

- Plugging in and solving the resulting 2-point boundary value problem gives

$$
u_{n}(x, t)=e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \sin \left(\frac{n \pi x}{L}\right), \quad n=1,2,3, \ldots
$$

- The general solution is an infinite series:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} u_{n}(x, t)
$$

where

$$
c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x .
$$

## Practice Problems

1. Indicate whether the following functions are even, odd or neither:
(a) $\sin (x)$ on $[-\pi, \pi]$
(b) $\cos (x)$ on $[-\pi, \pi]$
(c) $e^{x}$ on $[-5,5]$
(d)

$$
f(x)= \begin{cases}x^{2} & 0 \leq x \leq 1 \\ -x^{2} & -1 \leq x<0\end{cases}
$$

(e)

$$
f(x)= \begin{cases}x^{2}+1 & 0 \leq x \leq 1 \\ -x^{2}-1 & -1 \leq x<0\end{cases}
$$

2. A function is defined on $[0, \pi]$ by

$$
f(x)= \begin{cases}x & 0 \leq x \leq \pi / 2 \\ 0 & \pi / 2<x \leq \pi\end{cases}
$$

(a) Sketch the even periodic extension of $f(x)$ on the interval $(-3 \pi, 3 \pi)$ on the axes below. Label important points on the $x$ and $y$ axes:

(b) Sketch the odd periodic extension of $f(x)$ on the interval $(-3 \pi, 3 \pi)$ on the axes below. Label important points on the $x$ and $y$ axes:

(c) Without doing any calculations, what value does the Fourier Cosine series of $f(x)$ converge to at $x=3 \pi / 2$ ?
(d) $f(x)$ can be written as a Fourier Sine series,

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin (n x)
$$

Find the coefficients, $b_{n}$.

## 3. Heat equation with insulated ends:

Consider a thin pipe placed along the $x$-axis with ends at $x=0$ and $x=\pi$. The pipe is filled with water and a small amount of a certain chemical. The chemical spreads (diffuses) through the pipe and the concentration of the chemical at location $x$ and time $t$ denoted $u(x, t)$ satisfies the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

Initially the concentration has the following distribution

$$
u(x, 0)=x \quad 0 \leq x \leq \pi
$$

The ends of the pipe are closed, so the chemical cannot escape. This can be written as

$$
u_{x}(0, t)=0 \quad u_{x}(\pi, t) \quad t \geq 0
$$

(a) Assume that $u(x, t)=X(x) T(t)$ and find ODEs satisfied by $X$ and $T$.
(b) Use the boundary conditions for $u$ to derive boundary conditions for $X(x)$.
(c) Solve the resulting eigenvalue problem for $X(x)$.
(d) For each eigenvalue you found, solve the corresponding ODE for $T$.
(e) Take linear combinations of all the fundamental solutions $u_{n}(x, t)$ to get the general solution $u(x, t)$ of this heat equation.
(f) Finally, use the initial condition to find the coefficients $C_{n}$.

