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Review

Heat Equation (contd.)

• Non-homogeneous boundary conditions:

u(0, t) = T1 u(L, t) = T2

General solution:

u(x, t) = (T2 − T1)
x

L
+ T1 +

∞∑
n=1

cne
−n2π2α2t/L2

sin
(nπx
L

)
.

cn =
2

L

∫ L

0

(
f(x)− (T2 − T1)

x

L
− T1

)
sin
(nπx
L

)
dx

• Insulated ends:
ux(0, t) = 0 ux(L, t) = 0

General solution:

u(x, t) =
c0
2

+
∞∑
n=1

cne
−n2π2α2t/L2

cos
(nπx
L

)
cn =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

Wave Equation

• The wave equation is given by
∂2u

∂t2
= a2

∂2u

∂x2

• Boundary conditions (fixed ends):

u(0, t) = 0 u(L, t) = 0 for t ≥ 0

• Non-zero initial displacement but zero initial velocity:

u(x, 0) = f(x) ut(x, 0) = 0 for 0 < x < L

General solution:

u(x, t) =
∞∑
n=1

cn sin
(nπx
L

)
cos

(
nπat

L

)
cn =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

• Zero initial displacement but non-zero initial velocity:

u(x, 0) = 0 ut(x, 0) = g(x) for 0 < x < L

u(x, t) =
∞∑
n

kn sin
(nπx
L

)
sin

(
nπat

L

)
nπa

L
kn =

2

L

∫ L

0

g(x) sin
(nπx
L

)
dx
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Laplace Equation

• The 2D Laplace’s equation is given in rectangular (Cartesian) coordinates by

∂2u

∂x2
+
∂2u

∂y2
= 0

and in polar coordinates by

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

• Dirichlet problem on a rectangular region: 0 < x < a and 0 < y < b with the boundary
conditions

u(x, 0) = 0, u(x, b) = 0 0 < x < a

u(0, y) = 0, u(a, y) = f(y) 0 < y < b

General solution:

u(x, y) =
∞∑
n=1

cn sinh
(nπx

b

)
sin
(nπy

b

)
cn sinh

(nπa
b

)
=

2

b

∫ b

0

f(y) sin
(nπy

b

)
dy

• Dirichlet problem on a disk: r < a and 0 ≤ θ < 2π with the boundary condition

u(a, θ) = f(θ) 0 ≤ θ < 2π.

where f is periodic i.e. f(0) = f(2π) (this vaguely acts like a boundary condition in
the θ variable).

General solution:

u(r, θ) =
c0
2

+
∞∑
n=1

rn(cn cos(nθ) + kn sin(nθ))

cn =
1

πan

∫ 2π

0

f(θ) cos(nθ)dθ n = 0, 1, 2, ...

kn =
1

πan

∫ 2π

0

f(θ) sin(nθ)dθ n = 1, 2, ...
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Practice Problems

1. Heat equation with insulated ends:
Consider a thin pipe placed along the x-axis with ends at x = 0 and x = π. The pipe
is filled with water and a small amount of a certain chemical. The chemical spreads
(diffuses) through the pipe and the concentration of the chemical at location x and
time t denoted u(x, t) satisfies the equation

∂2u

∂x2
=
∂u

∂t

Initially the concentration has the following distribution

u(x, 0) = x 0 ≤ x ≤ π

The ends of the pipe are closed, so the chemical cannot escape. This can be written as

ux(0, t) = 0 ux(π, t) = 0 t ≥ 0

(a) Assume that u(x, t) = X(x)T (t) and find ODEs satisfied by X and T .

Solution:

X(x)T ′(t) = X ′′(x)T (t) =⇒ T ′(t)

T (t)
=
X ′′(x)

X(x)
.

Since the left-hand side depends only on t and the left depends only on x, both
have to equal a constant, λ:

X ′′(x)− λX(x) = 0

T ′(t)− λT (t) = 0

(b) Use the boundary conditions for u to derive boundary conditions for X(x).

Solution:
ux(0, t) = ux(π, t) = 0

so we have
X ′(0)T (t) = 0 X ′(π)T (t) = 0

If T (t) = 0 everywhere, the solution would be trivial, so we assume this is not the
case. Thus it must be that

X ′(0) = X ′(π) = 0.

(c) Solve the resulting eigenvalue problem for X(x).

Solution: Let’s break down the problem into three different cases.
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λ > 0:
In this case, the general solution is

X(x) = C1 cosh(
√
λx) + C2 sinh(

√
λx),

Plugging in the initial conditions in this case simply gives C1 = C2 = 0.

λ = 0:
In this case, we get X(x) = C1x + C2. Plugging in the initial conditions we get
C1 = 0 and arbitrary C2 (but we can take C2 = 1). So the eigenvalue is λ0 = 0
and the eigenfunction is X0 = 1.

λ < 0:
Let λ = −µ2 and we get

X(x) = C1 cos(µx) + C2 sin(µx).

Plugging in the initial conditions we get C2 = 0 and sin(µπ) = 0. Thus µ = n
i.e. the eigenvalues are λn = −n2 and the corresponding eigenfunctions are Xn =
cos(nx).

(d) For each eigenvalue you found, solve the corresponding ODE for T .

Solution: For λ0 = 0, the ODE for T0 is given by

T ′0(t) = 0

We denote the solution by T0 since it corresponds to λ0. We thus have T0 = C0

for some constant C0.

For λn = −n2, the ODE is T ′n = −n2Tn so Tn = Cne
−n2t, for some constant Cn.

(e) Take linear combinations of all the fundamental solutions un(x, t) to get the gen-
eral solution u(x, t) of this heat equation.

Solution: For λ0, u0(x, t) = C0/2 (the factor of half is optional, but it simplifies
a calculation in the next part). For λn, un(x, t) = Cn cos(nx)e−n

2t and

u(x, t) =
∞∑
n=0

un(x, t) =
C0

2
+
∞∑
n=1

Cn cos(nx)e−n
2t.

(f) Finally, use the initial condition to find the coefficients Cn.

Solution: Plug in t = 0 into the general solution:

u(x, 0) = x =
C0

2
+
∞∑
n=1

Cn cos(nx) x ∈ [0, π]

This is just the cosine series expansion for f(x) = x. We need to evenly extend
f(x) on [−π, π], so we define f(x) = −x for x ∈ [−π, 0). In other words, we take
f(x) = |x| on [−π, π]. We can now compute the coefficients:

C0 =
2

π

∫ π

0

xdx = π
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Cn =
2

π

∫ π

0

x cos(nx)dx =
2

n2π
[(−1)n − 1].

Thus the final answer is

u(x, t) =
π

2
+
∞∑
n=1

2

n2π
[(−1)n − 1] cos(nx)e−n

2t

2. D’Alembert’s formula: For the wave equation a2uxx = utt, it turns out that solutions
can be written as

u(x, t) = F (x+ at) +G(x− at)

for some functions F and G. This question will guide you through the process of using
this formula to solve wave equation problems.

(a) Show that u(x, t) = F (x+ at) +G(x− at) satisfies the wave equation.

Solution: Computing the derivatives (using chain rule):

uxx = F ′′(x+ at) +G′′(x− at)

utt = a2F ′′(x+ at) + a2G(x− at)

So we see that
a2uxx = a2F ′′(x+ at) + a2G(x− at) = utt.

(b) Suppose we have the initial conditions u(x, 0) = f(x) and ut(x, 0) = 0. Then
show that

F (x) +G(x) = f(x)

a(F ′(x)−G′(x)) = 0

Solution: Plugging in t = 0 into u(x, t) = F (x+ at) +G(x− at), we get

u(x, 0) = F (x) +G(x).

From the initial condition, we know u(x, 0) = f(x), so this gives us the firs formula.

Similarly, ut(x, t) = aF ′(x + at) − aG′(x − at) thus, ut(x, 0) = a(F ′(x) − G′(x)).
Thus from the second initial condition we get a(F ′(x)−G′(x)) = 0.

(c) Use the equations from above to show that

u(x, t) =
1

2
[f(x+ at) + f(x− at)]

solves the wave equation with the given initial conditions.

Solution: From the previous part we got

F (x) +G(x) = f(x) a(F ′(x)−G′(x)) = 0
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Rearranging the second equation we get

F ′(x) = G′(x)

and integrating, we get
F (x) = G(x) + C

where C is an integrating constant. Plugging this into the first equation,

F (x) +G(x) = f(x)

(G(x) + C) +G(x) = f(x)

2G(x) = f(x)− C

G(x) =
f(x)− C

2
,

which we can then use to find

F (x) = G(x) + C =
f(x)− C

2
+ C =

f(x) + C

2
.

Now we go back to the equation u(x, t) = F (x+ at) +G(x− at). Simply use the
formulas for F and G in terms of f that we just derived an we get:

u(x, t) =
f(x+ at) + C

2
+
f(x− at)− C

2

u(x, t) =
f(x+ at) + f(x− at)

2

3. Neumann problem for Laplace’s equation on the disk

urr +
1

r
ur +

1

r2
uθθ = 0 0 ≤ r ≤ a 0 ≤ θ < 2π

ur(a, θ) = f(θ) 0 ≤ θ < 2π

Notice that we have prescribed ur, the derivative of u in the radial direction at the
boundary of the disk, instead of u itself. This kind of a problem is known as a Neu-
mann problem.

Using the method of separation of variables, find the solution to this problem.

Solution: Assume that
u(r, θ) = R(r)Θ(θ)

and plug it into the equation, divide by RΘ and multiply by r2:

r2
R′′

R
+ r

R′

R
=
−Θ′′

Θ
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Then from the separation of variables we have

Θ′′ + λΘ = 0

r2R′′ + rR− λR = 0

Since the θ variable is periodic, for the equation to be well-defined, we must make sure
that Θ(θ) = Θ(θ + 2π). This gives us a 2-point boundary value problem in Θ:

λ < 0:
Θ(θ) = c1e

√
λθ + c2e

−
√
λθ

Using the periodicity condition,

c1e
√
λθ + c2e

−
√
λθ = c1e

√
λθe2π

√
λ + c2e

−
√
λθe−2π

√
λ

matching the terms, we get

c1 = c1e
2π
√
λ c2 = c2e

−2π
√
λ

which gives c1 = c2 (trivial).

λ = 0:
Θ0(θ) = c1 + c2θ

For this to be periodic, c2 must be zero but c1 can be any constant. Thus λ = 0 gives
non-trivial solutions to the Θ equation. We now plug in λ = 0 into the equation R to
get

r2R′′0 + rR′0 = 0

Taking w = R′0, we get rw′ = −w. Integrating gives lnw = − ln r + C, or w = c1
1
r
.

To get R0 we need to integrate again, and this gives us R0(r) = c1 + c2 ln r. However,
at r = 0, ln(r) goes to −∞ which does not make sense so we need c2 = 0. Thus we
have R0(r) = c1, and we u0(r, θ) = R0(r)Θ0(θ) = c0/2 (where the 0 denotes the λ = 0
eigenvalue). We also divide by 2 because this helps simplify a later calculation.

λ > 0:
Θ(θ) = A cos(

√
λθ) +B sin(

√
λθ).

For periodicity, we will need λ = n2, thus the eigenfunctions

Θn(θ) = A cos(nθ) +B sin(nθ) n = 1, 2, 3, ...

Now we want to solve for R:

r2R′′ + rR′ − n2R = 0

We look for solutions of the form m = rm. Plugging in, we get m = ±n, thus,

Rn(r) = Arn +Br−n

7



However, for this to be well defined at r = 0, we need B = 0

Rn(r) = Arn

Thus we have the general solution:

u(r, θ) =
c0
2

+
∞∑
n=1

rn[An cos(nθ) +Bn sin(nθ)]

To use the boundary condition, we differentiate in r:

ur(r, θ) =
∞∑
n=1

nrn−1[An cos(nθ) +Bn sin(nθ)]

Plugging in r = a and setting it equal to f(θ) we get the following equations for An
and Bn:

nan−1An =
1

π

∫ 2π

0

f(θ) cos(nθ)dθ

nan−1Bn =
1

π

∫ 2π

0

f(θ) sin(nθ)dθ
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