310.6,10.7 NAME:
Fall MATH 2930 02 December 2021

REVIEW

HEAT EQUATION (CONTD.)
e Non-homogeneous boundary conditions:
U(O, t) = T1 U(L, t) = T2

General solution:

u(x,t) = (T — Tl)% + T + Z Cnefn2ﬁ2a2t/L2 sin (nzx) |
n=1

2 [k T . /NTT
Cp = Z/o (f(:t) —(Ty — Tl)Z - T1> sin <T> dx
e Insulated ends:
uz(0,) =0 (L, t) =0

General solution:
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WAVE EQUATION

e The wave equation is given by

Pu 0%

— = q"—

ot? Ox?
e Boundary conditions (fixed ends):

uw(0,t) =0 wu(L,t)=0 fort>0
e Non-zero initial displacement but zero initial velocity:
uw(z,0) = f(x) w(z,0)=0 forO0<z<L

General solution:
oo y ) .
u(z,t) = nz:lcn sin (?) cos (mza ) = Z/0 () sin <n;r;a:> i

e Zero initial displacement but non-zero initial velocity:

u(z,0) =0 wu(x,0)=g(x) for0<axz<L
= . (nmx\ . (nmat nma 2 [k . (NTT
u(z,t) = Z k, sin <T> sin ( 7 > Tkn = Z/o g(x)sin <T) dx




LAPLACE EQUATION

e The 2D Laplace’s equation is given in rectangular (Cartesian) coordinates by

qu 0%u
8:62 8y

and in polar coordinates by

0*u  10u 1 0%u

o o e =Y

e Dirichlet problem on a rectangular region: 0 < z < a and 0 < y < b with the boundary
conditions

u(z,0) =0, u(z,b)=0 0<z<a
w0,y) =0, u(a,y) = f(y) 0<y<b

General solution:
= Z ¢ sinh (n_zx) sin <n_;ry) Cn sinh mra / f(y)si mry) dy
n=1

e Dirichlet problem on a disk: r < a and 0 < 6 < 27 with the boundary condition
u(a,0) = f(0) 0<6<2m.

where f is periodic i.e. f(0) = f(27) (this vaguely acts like a boundary condition in
the 0 variable).

General solution:

Co n
-2 > " r"(cq cos(nf) + k, sin(nd))

n=1

1 2m
Cp = / f(@)cos(nd)dd n=0,1,2,...
0

wa”

27
b= —— [ F(0)sinmO)d0 n =12, ..
0

ma”




PRACTICE PROBLEMS

1. Heat equation with insulated ends:
Consider a thin pipe placed along the z-axis with ends at x = 0 and x = 7. The pipe
is filled with water and a small amount of a certain chemical. The chemical spreads
(diffuses) through the pipe and the concentration of the chemical at location z and
time ¢ denoted u(z,t) satisfies the equation

’u  Ou

o Ot

Initially the concentration has the following distribution
u(z,0)=z 0<zx<m
The ends of the pipe are closed, so the chemical cannot escape. This can be written as
ur(0,8) =0 wuu(mt)=0 t>0

(a) Assume that u(z,t) = X (z)T(t) and find ODEs satisfied by X and 7'

Solution:
7t X"(z)

()  X(x)
Since the left-hand side depends only on t and the left depends only on z, both
have to equal a constant, A:

X(@)T'(t) = X"(2)T(t) =

X"(z) = AX(z) =0

T'(t) = AT(t) =0

(b) Use the boundary conditions for u to derive boundary conditions for X (x).
Solution:
Uz (0,) = ug(m, t) =0

so we have

X'(0)T(t) =0 X'(m)T(t) =0

If T'(t) = 0 everywhere, the solution would be trivial, so we assume this is not the
case. Thus it must be that

(c) Solve the resulting eigenvalue problem for X (x).

Solution: Let’s break down the problem into three different cases.



A>0:
In this case, the general solution is

X (z) = Cy cosh(VAz) + Cy sinh(vV/Az),

Plugging in the initial conditions in this case simply gives C; = Cy = 0.

A=0:

In this case, we get X (z) = Cix + Cy. Plugging in the initial conditions we get
Cy = 0 and arbitrary Cy (but we can take Cy = 1). So the eigenvalue is A\g = 0
and the eigenfunction is Xy = 1.

A <O
Let A = —u? and we get

X (x) = Cy cos(px) + Cysin(px).

Plugging in the initial conditions we get Cy = 0 and sin(ur) = 0. Thus up = n
i.e. the eigenvalues are \, = —n? and the corresponding eigenfunctions are X,, =
cos(nz).

For each eigenvalue you found, solve the corresponding ODE for T

Solution: For \y = 0, the ODE for T} is given by

Ty(t) =0

We denote the solution by T} since it corresponds to \g. We thus have T = Cj
for some constant Cj.

For \, = —n?, the ODE is T, = —n?T}, so T,, = Cr,e ™!, for some constant C,.
Take linear combinations of all the fundamental solutions u,(x,t) to get the gen-
eral solution u(z,t) of this heat equation.

Solution: For g, ug(z,t) = Cy/2 (the factor of half is optional, but it simplifies

a calculation in the next part). For A, u,(z,t) = C,, cos(nx)e ™" and
u(x,t) = i up(z,t) = G - i C,, cos(nx)e ™"
n=0 2 n=1

Finally, use the initial condition to find the coefficients C,.
Solution: Plug in ¢ = 0 into the general solution:

Co  «—
u(z,0) =z = 5 + ; Cycos(nz) x € [0,7]

This is just the cosine series expansion for f(z) = . We need to evenly extend
f(z) on [—m, 7], so we define f(z) = —x for z € [—7,0). In other words, we take
f(z) = |z| on [—m, 7w]. We can now compute the coefficients:

2 ™
C'Oz—/ xdr =T
0

™



= 2 /wacos(nx)dx = TW[(—U" —1].

Thus the final answer is
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2. D’Alembert’s formula: For the wave equation a’u,, = wuy, it turns out that solutions

can be written as
uw(z,t) = F(x +at) + G(z — at)

for some functions F' and GG. This question will guide you through the process of using
this formula to solve wave equation problems.

(a) Show that u(z,t) = F(z + at) + G(x — at) satisfies the wave equation.
Solution: Computing the derivatives (using chain rule):

Uge = F" (2 + at) + G"(x — at)

uy = a*F"(z + at) + a®G(x — at)

So we see that
a*Uyy = a*F"(x + at) + a®G(z — at) = uy.

(b) Suppose we have the initial conditions u(z,0) = f(z) and u(x,0) = 0. Then

show that
F(z) + G(x) = f()
a(F'(z) = G'(x)) =0
Solution: Plugging in ¢t = 0 into u(z,t) = F(x + at) + G(z — at), we get

u(z,0) = F(x) + G(x).

From the initial condition, we know u(z,0) = f(z), so this gives us the firs formula.

Similarly, u(z,t) = aF'(x + at) — aG'(x — at) thus, w(z,0) = a(F'(z) — G'(x)).
Thus from the second initial condition we get a(F'(z) — G'(x)) = 0.

(c) Use the equations from above to show that

() = %[f(x +at)+ flz — at)]

solves the wave equation with the given initial conditions.
Solution: From the previous part we got

F(a)+Gle) = f(z)  a(F'(x) - G'(2)) = 0
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Rearranging the second equation we get
F'(z) = G'(x)

and integrating, we get

F(z) =G(z)+C

where (' is an integrating constant. Plugging this into the first equation,

F(z)+ G(z) = f(x)
(G(z)+C)+ G(z) = f(x)
26(2) = f(@) - C
G(z) = f(x)Q— C"
which we can then use to find
F(x) = Glz) + C = f<x>2— C ooz f(a:)2+ c

Now we go back to the equation u(x,t) = F(z + at) + G(x — at). Simply use the
formulas for F' and G in terms of f that we just derived an we get:
flx+at)+C  flx—at)—C

2 * 2

f(x+at) + f(x — at)
2

u(z,t) =

u(z,t) =

3. Neumann problem for Laplace’s equation on the disk

1 1
Upr + Uy + —ugg = 0 0<r<a 0<60<2rm
r r
ur(a,0) = f(0) 0<6<2r
Notice that we have prescribed u,, the derivative of u in the radial direction at the

boundary of the disk, instead of w itself. This kind of a problem is known as a Neu-
mann problem.

Using the method of separation of variables, find the solution to this problem.

Solution: Assume that

u(r,0) = R(r)O(0)
and plug it into the equation, divide by RO and multiply by 72:




Then from the separation of variables we have
O"+X0=0
R+ rR— AR =0

Since the 6 variable is periodic, for the equation to be well-defined, we must make sure
that ©(0) = O(6 + 27). This gives us a 2-point boundary value problem in ©:

A <0:
O(0) = c1e¥ + cye VN

Using the periodicity condition,

Cleﬁe + 626—\&9 _ cle‘/we%ﬁ + 626—\596—%\&
matching the terms, we get
e = 0162ﬂﬁ Co = 626_27“5

which gives ¢; = ¢y (trivial).

A=0:
@0(9) =C + 620

For this to be periodic, co must be zero but ¢; can be any constant. Thus A = 0 gives
non-trivial solutions to the © equation. We now plug in A = 0 into the equation R to
get
Ry +rRy =0

Taking w = R{, we get rw’ = —w. Integrating gives Inw = —Inr + C, or w = cl%.
To get Ry we need to integrate again, and this gives us Ry(r) = ¢ + ¢ Inr. However,
at r = 0, In(r) goes to —oo which does not make sense so we need ¢y = 0. Thus we
have Ro(r) = ¢1, and we ug(r,0) = Ro(r)O0(0) = co/2 (where the 0 denotes the A =0
eigenvalue). We also divide by 2 because this helps simplify a later calculation.

A> 0
O() = Acos(VA) + Bsin(VA0).

For periodicity, we will need A = n?, thus the eigenfunctions
©,(0) = Acos(nf) + Bsin(nf) n=1,2,3,...
Now we want to solve for R:
r’R'+rR —n’R=0
We look for solutions of the form ,, = r™. Plugging in, we get m = +n, thus,

R.(r)=Ar"+ Br "

7



However, for this to be well defined at » = 0, we need B =0

R,(r) = Ar"
Thus we have the general solution:

+ Zr" [A,, cos(nf) + B, sin(nf)]

n=1

_%
2
To use the boundary condition, we differentiate in r:

Z nr" ' A, cos(nf) + B, sin(nd)]

Plugging in 7 = a and setting it equal to f(6) we get the following equations for A,

and B,,:
/ f(0) cos(nd)d

na" 'B, = ~ f( ) sin(nd)dd



