\qquad

Review

Heat Equation (contd.)

- Non-homogeneous boundary conditions:

$$
u(0, t)=T_{1} \quad u(L, t)=T_{2}
$$

General solution:

$$
\begin{gathered}
u(x, t)=\left(T_{2}-T_{1}\right) \frac{x}{L}+T_{1}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \sin \left(\frac{n \pi x}{L}\right) . \\
c_{n}=\frac{2}{L} \int_{0}^{L}\left(f(x)-\left(T_{2}-T_{1}\right) \frac{x}{L}-T_{1}\right) \sin \left(\frac{n \pi x}{L}\right) d x
\end{gathered}
$$

- Insulated ends:

$$
u_{x}(0, t)=0 \quad u_{x}(L, t)=0
$$

General solution:

$$
u(x, t)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \cos \left(\frac{n \pi x}{L}\right) \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Wave Equation

- The wave equation is given by

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

- Boundary conditions (fixed ends):

$$
u(0, t)=0 \quad u(L, t)=0 \quad \text { for } t \geq 0
$$

- Non-zero initial displacement but zero initial velocity:

$$
u(x, 0)=f(x) \quad u_{t}(x, 0)=0 \quad \text { for } 0<x<L
$$

General solution:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi a t}{L}\right) \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- Zero initial displacement but non-zero initial velocity:

$$
\begin{aligned}
& u(x, 0)=0 \quad u_{t}(x, 0)=g(x) \quad \text { for } 0<x<L \\
& u(x, t)=\sum_{n}^{\infty} k_{n} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi a t}{L}\right) \quad \frac{n \pi a}{L} k_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Laplace Equation

- The 2D Laplace's equation is given in rectangular (Cartesian) coordinates by

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

and in polar coordinates by

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

- Dirichlet problem on a rectangular region: $0<x<a$ and $0<y<b$ with the boundary conditions

$$
\begin{array}{lll}
u(x, 0)=0, & u(x, b)=0 & 0<x<a \\
u(0, y)=0, & u(a, y)=f(y) & 0<y<b
\end{array}
$$

General solution:

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right) \quad c_{n} \sinh \left(\frac{n \pi a}{b}\right)=\frac{2}{b} \int_{0}^{b} f(y) \sin \left(\frac{n \pi y}{b}\right) d y
$$

- Dirichlet problem on a disk: $r<a$ and $0 \leq \theta<2 \pi$ with the boundary condition

$$
u(a, \theta)=f(\theta) \quad 0 \leq \theta<2 \pi
$$

where f is periodic i.e. $f(0)=f(2 \pi)$ (this vaguely acts like a boundary condition in the θ variable).

General solution:

$$
\begin{gathered}
u(r, \theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right) \\
c_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \quad n=0,1,2, \ldots \\
k_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta \quad n=1,2, \ldots
\end{gathered}
$$

Practice Problems

1. Heat equation with insulated ends:

Consider a thin pipe placed along the x-axis with ends at $x=0$ and $x=\pi$. The pipe is filled with water and a small amount of a certain chemical. The chemical spreads (diffuses) through the pipe and the concentration of the chemical at location x and time t denoted $u(x, t)$ satisfies the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

Initially the concentration has the following distribution

$$
u(x, 0)=x \quad 0 \leq x \leq \pi
$$

The ends of the pipe are closed, so the chemical cannot escape. This can be written as

$$
u_{x}(0, t)=0 \quad u_{x}(\pi, t)=0 \quad t \geq 0
$$

(a) Assume that $u(x, t)=X(x) T(t)$ and find ODEs satisfied by X and T.

Solution:

$$
X(x) T^{\prime}(t)=X^{\prime \prime}(x) T(t) \Longrightarrow \frac{T^{\prime}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

Since the left-hand side depends only on t and the left depends only on x, both have to equal a constant, λ :

$$
\begin{gathered}
X^{\prime \prime}(x)-\lambda X(x)=0 \\
T^{\prime}(t)-\lambda T(t)=0
\end{gathered}
$$

(b) Use the boundary conditions for u to derive boundary conditions for $X(x)$.

Solution:

$$
u_{x}(0, t)=u_{x}(\pi, t)=0
$$

so we have

$$
X^{\prime}(0) T(t)=0 \quad X^{\prime}(\pi) T(t)=0
$$

If $T(t)=0$ everywhere, the solution would be trivial, so we assume this is not the case. Thus it must be that

$$
X^{\prime}(0)=X^{\prime}(\pi)=0
$$

(c) Solve the resulting eigenvalue problem for $X(x)$.

Solution: Let's break down the problem into three different cases.
$\lambda>0$:
In this case, the general solution is

$$
X(x)=C_{1} \cosh (\sqrt{\lambda} x)+C_{2} \sinh (\sqrt{\lambda} x)
$$

Plugging in the initial conditions in this case simply gives $C_{1}=C_{2}=0$.
$\lambda=0$:
In this case, we get $X(x)=C_{1} x+C_{2}$. Plugging in the initial conditions we get $C_{1}=0$ and arbitrary C_{2} (but we can take $C_{2}=1$). So the eigenvalue is $\lambda_{0}=0$ and the eigenfunction is $X_{0}=1$.
$\lambda<0$:
Let $\lambda=-\mu^{2}$ and we get

$$
X(x)=C_{1} \cos (\mu x)+C_{2} \sin (\mu x) .
$$

Plugging in the initial conditions we get $C_{2}=0$ and $\sin (\mu \pi)=0$. Thus $\mu=n$ i.e. the eigenvalues are $\lambda_{n}=-n^{2}$ and the corresponding eigenfunctions are $X_{n}=$ $\cos (n x)$.
(d) For each eigenvalue you found, solve the corresponding ODE for T.

Solution: For $\lambda_{0}=0$, the ODE for T_{0} is given by

$$
T_{0}^{\prime}(t)=0
$$

We denote the solution by T_{0} since it corresponds to λ_{0}. We thus have $T_{0}=C_{0}$ for some constant C_{0}.
For $\lambda_{n}=-n^{2}$, the ODE is $T_{n}^{\prime}=-n^{2} T_{n}$ so $T_{n}=C_{n} e^{-n^{2} t}$, for some constant C_{n}.
(e) Take linear combinations of all the fundamental solutions $u_{n}(x, t)$ to get the general solution $u(x, t)$ of this heat equation.
Solution: For $\lambda_{0}, u_{0}(x, t)=C_{0} / 2$ (the factor of half is optional, but it simplifies a calculation in the next part). For $\lambda_{n}, u_{n}(x, t)=C_{n} \cos (n x) e^{-n^{2} t}$ and

$$
u(x, t)=\sum_{n=0}^{\infty} u_{n}(x, t)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos (n x) e^{-n^{2} t}
$$

(f) Finally, use the initial condition to find the coefficients C_{n}.

Solution: Plug in $t=0$ into the general solution:

$$
u(x, 0)=x=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos (n x) \quad x \in[0, \pi]
$$

This is just the cosine series expansion for $f(x)=x$. We need to evenly extend $f(x)$ on $[-\pi, \pi]$, so we define $f(x)=-x$ for $x \in[-\pi, 0)$. In other words, we take $f(x)=|x|$ on $[-\pi, \pi]$. We can now compute the coefficients:

$$
C_{0}=\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi
$$

$$
C_{n}=\frac{2}{\pi} \int_{0}^{\pi} x \cos (n x) d x=\frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right]
$$

Thus the final answer is

$$
u(x, t)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{2}{n^{2} \pi}\left[(-1)^{n}-1\right] \cos (n x) e^{-n^{2} t}
$$

2. D'Alembert's formula: For the wave equation $a^{2} u_{x x}=u_{t t}$, it turns out that solutions can be written as

$$
u(x, t)=F(x+a t)+G(x-a t)
$$

for some functions F and G. This question will guide you through the process of using this formula to solve wave equation problems.
(a) Show that $u(x, t)=F(x+a t)+G(x-a t)$ satisfies the wave equation.

Solution: Computing the derivatives (using chain rule):

$$
\begin{gathered}
u_{x x}=F^{\prime \prime}(x+a t)+G^{\prime \prime}(x-a t) \\
u_{t t}=a^{2} F^{\prime \prime}(x+a t)+a^{2} G(x-a t)
\end{gathered}
$$

So we see that

$$
a^{2} u_{x x}=a^{2} F^{\prime \prime}(x+a t)+a^{2} G(x-a t)=u_{t t} .
$$

(b) Suppose we have the initial conditions $u(x, 0)=f(x)$ and $u_{t}(x, 0)=0$. Then show that

$$
\begin{gathered}
F(x)+G(x)=f(x) \\
a\left(F^{\prime}(x)-G^{\prime}(x)\right)=0
\end{gathered}
$$

Solution: Plugging in $t=0$ into $u(x, t)=F(x+a t)+G(x-a t)$, we get

$$
u(x, 0)=F(x)+G(x)
$$

From the initial condition, we know $u(x, 0)=f(x)$, so this gives us the firs formula.

Similarly, $u_{t}(x, t)=a F^{\prime}(x+a t)-a G^{\prime}(x-a t)$ thus, $u_{t}(x, 0)=a\left(F^{\prime}(x)-G^{\prime}(x)\right)$. Thus from the second initial condition we get $a\left(F^{\prime}(x)-G^{\prime}(x)\right)=0$.
(c) Use the equations from above to show that

$$
u(x, t)=\frac{1}{2}[f(x+a t)+f(x-a t)]
$$

solves the wave equation with the given initial conditions.
Solution: From the previous part we got

$$
F(x)+G(x)=f(x) \quad a\left(F^{\prime}(x)-G^{\prime}(x)\right)=0
$$

Rearranging the second equation we get

$$
F^{\prime}(x)=G^{\prime}(x)
$$

and integrating, we get

$$
F(x)=G(x)+C
$$

where C is an integrating constant. Plugging this into the first equation,

$$
\begin{aligned}
F(x)+G(x) & =f(x) \\
(G(x)+C)+G(x) & =f(x) \\
2 G(x) & =f(x)-C \\
G(x) & =\frac{f(x)-C}{2}
\end{aligned}
$$

which we can then use to find

$$
F(x)=G(x)+C=\frac{f(x)-C}{2}+C=\frac{f(x)+C}{2} .
$$

Now we go back to the equation $u(x, t)=F(x+a t)+G(x-a t)$. Simply use the formulas for F and G in terms of f that we just derived an we get:

$$
\begin{gathered}
u(x, t)=\frac{f(x+a t)+C}{2}+\frac{f(x-a t)-C}{2} \\
u(x, t)=\frac{f(x+a t)+f(x-a t)}{2}
\end{gathered}
$$

3. Neumann problem for Laplace's equation on the disk

$$
\begin{array}{ll}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 & 0 \leq r \leq a \quad 0 \leq \theta<2 \pi \\
u_{r}(a, \theta)=f(\theta) & 0 \leq \theta<2 \pi
\end{array}
$$

Notice that we have prescribed u_{r}, the derivative of u in the radial direction at the boundary of the disk, instead of u itself. This kind of a problem is known as a Neumann problem.

Using the method of separation of variables, find the solution to this problem.
Solution: Assume that

$$
u(r, \theta)=R(r) \Theta(\theta)
$$

and plug it into the equation, divide by $R \Theta$ and multiply by r^{2} :

$$
r^{2} \frac{R^{\prime \prime}}{R}+r \frac{R^{\prime}}{R}=\frac{-\Theta^{\prime \prime}}{\Theta}
$$

Then from the separation of variables we have

$$
\begin{gathered}
\Theta^{\prime \prime}+\lambda \Theta=0 \\
r^{2} R^{\prime \prime}+r R-\lambda R=0
\end{gathered}
$$

Since the θ variable is periodic, for the equation to be well-defined, we must make sure that $\Theta(\theta)=\Theta(\theta+2 \pi)$. This gives us a 2-point boundary value problem in Θ :
$\lambda<0$:

$$
\Theta(\theta)=c_{1} e^{\sqrt{\lambda} \theta}+c_{2} e^{-\sqrt{\lambda} \theta}
$$

Using the periodicity condition,

$$
c_{1} e^{\sqrt{\lambda} \theta}+c_{2} e^{-\sqrt{\lambda} \theta}=c_{1} e^{\sqrt{\lambda \theta} \theta} e^{2 \pi \sqrt{\lambda}}+c_{2} e^{-\sqrt{\lambda} \theta} e^{-2 \pi \sqrt{\lambda}}
$$

matching the terms, we get

$$
c_{1}=c_{1} e^{2 \pi \sqrt{\lambda}} \quad c_{2}=c_{2} e^{-2 \pi \sqrt{\lambda}}
$$

which gives $c_{1}=c_{2}$ (trivial).
$\lambda=0:$

$$
\Theta_{0}(\theta)=c_{1}+c_{2} \theta
$$

For this to be periodic, c_{2} must be zero but c_{1} can be any constant. Thus $\lambda=0$ gives non-trivial solutions to the Θ equation. We now plug in $\lambda=0$ into the equation R to get

$$
r^{2} R_{0}^{\prime \prime}+r R_{0}^{\prime}=0
$$

Taking $w=R_{0}^{\prime}$, we get $r w^{\prime}=-w$. Integrating gives $\ln w=-\ln r+C$, or $w=c_{1} \frac{1}{r}$. To get R_{0} we need to integrate again, and this gives us $R_{0}(r)=c_{1}+c_{2} \ln r$. However, at $r=0, \ln (r)$ goes to $-\infty$ which does not make sense so we need $c_{2}=0$. Thus we have $R_{0}(r)=c_{1}$, and we $u_{0}(r, \theta)=R_{0}(r) \Theta_{0}(\theta)=c_{0} / 2$ (where the 0 denotes the $\lambda=0$ eigenvalue). We also divide by 2 because this helps simplify a later calculation.
$\lambda>0$:

$$
\Theta(\theta)=A \cos (\sqrt{\lambda} \theta)+B \sin (\sqrt{\lambda} \theta)
$$

For periodicity, we will need $\lambda=n^{2}$, thus the eigenfunctions

$$
\Theta_{n}(\theta)=A \cos (n \theta)+B \sin (n \theta) \quad n=1,2,3, \ldots
$$

Now we want to solve for R :

$$
r^{2} R^{\prime \prime}+r R^{\prime}-n^{2} R=0
$$

We look for solutions of the form ${ }_{m}=r^{m}$. Plugging in, we get $m= \pm n$, thus,

$$
R_{n}(r)=A r^{n}+B r^{-n}
$$

However, for this to be well defined at $r=0$, we need $B=0$

$$
R_{n}(r)=A r^{n}
$$

Thus we have the general solution:

$$
u(r, \theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left[A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

To use the boundary condition, we differentiate in r :

$$
u_{r}(r, \theta)=\sum_{n=1}^{\infty} n r^{n-1}\left[A_{n} \cos (n \theta)+B_{n} \sin (n \theta)\right]
$$

Plugging in $r=a$ and setting it equal to $f(\theta)$ we get the following equations for A_{n} and B_{n} :

$$
\begin{aligned}
& n a^{n-1} A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \\
& n a^{n-1} B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta
\end{aligned}
$$

