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Review

Heat Equation (contd.)

• Non-homogeneous boundary conditions:

u(0, t) = T1 u(L, t) = T2

General solution:

u(x, t) = (T2 − T1)
x

L
+ T1 +

∞∑
n=1

cne
−n2π2α2t/L2

sin
(nπx
L

)
.

cn =
2

L

∫ L

0

(
f(x) − (T2 − T1)

x

L
− T1

)
sin
(nπx
L

)
dx

• Insulated ends:
ux(0, t) = 0 ux(L, t) = 0

General solution:

u(x, t) =
c0
2

+
∞∑
n=1

cne
−n2π2α2t/L2

cos
(nπx
L

)
cn =

2

L

∫ L

0

f(x) cos
(nπx
L

)
dx

Wave Equation

• The wave equation is given by
∂2u

∂t2
= a2

∂2u

∂x2

• Boundary conditions (fixed ends):

u(0, t) = 0 u(L, t) = 0 for t ≥ 0

• Non-zero initial displacement but zero initial velocity:

u(x, 0) = f(x) ut(x, 0) = 0 for 0 < x < L

General solution:

u(x, t) =
∞∑
n=1

cn sin
(nπx
L

)
cos

(
nπat

L

)
cn =

2

L

∫ L

0

f(x) sin
(nπx
L

)
dx

• Zero initial displacement but non-zero initial velocity:

u(x, 0) = 0 ut(x, 0) = g(x) for 0 < x < L

u(x, t) =
∞∑
n

kn sin
(nπx
L

)
sin

(
nπat

L

)
nπa

L
kn =

2

L

∫ L

0

g(x) sin
(nπx
L

)
dx
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Laplace Equation

• The 2D Laplace’s equation is given in rectangular (Cartesian) coordinates by

∂2u

∂x2
+
∂2u

∂y2
= 0

and in polar coordinates by

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2
= 0

• Dirichlet problem on a rectangular region: 0 < x < a and 0 < y < b with the boundary
conditions

u(x, 0) = 0, u(x, b) = 0 0 < x < a

u(0, y) = 0, u(a, y) = f(y) 0 < y < b

General solution:

u(x, y) =
∞∑
n=1

cn sinh
(nπx

b

)
sin
(nπy

b

)
cn sinh

(nπa
b

)
=

2

b

∫ b

0

f(y) sin
(nπy

b

)
dy

• Dirichlet problem on a disk: r < a and 0 ≤ θ < 2π with the boundary condition

u(a, θ) = f(θ) 0 ≤ θ < 2π.

where f is periodic i.e. f(0) = f(2π) (this vaguely acts like a boundary condition in
the θ variable).

General solution:

u(r, θ) =
c0
2

+
∞∑
n=1

rn(cn cos(nθ) + kn sin(nθ))

cn =
1

πan

∫ 2π

0

f(θ) cos(nθ)dθ n = 0, 1, 2, ...

kn =
1

πan

∫ 2π

0

f(θ) sin(nθ)dθ n = 1, 2, ...
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Practice Problems

1. Heat equation with insulated ends:
Consider a thin pipe placed along the x-axis with ends at x = 0 and x = π. The pipe
is filled with water and a small amount of a certain chemical. The chemical spreads
(diffuses) through the pipe and the concentration of the chemical at location x and
time t denoted u(x, t) satisfies the equation

∂2u

∂x2
=
∂u

∂t

Initially the concentration has the following distribution

u(x, 0) = x 0 ≤ x ≤ π

The ends of the pipe are closed, so the chemical cannot escape. This can be written as

ux(0, t) = 0 ux(π, t) = 0 t ≥ 0

(a) Assume that u(x, t) = X(x)T (t) and find ODEs satisfied by X and T .

(b) Use the boundary conditions for u to derive boundary conditions for X(x).
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(c) Solve the resulting eigenvalue problem for X(x).

(d) For each eigenvalue you found, solve the corresponding ODE for T .

(e) Take linear combinations of all the fundamental solutions un(x, t) to get the gen-
eral solution u(x, t) of this heat equation.
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(f) Finally, use the initial condition to find the coefficients Cn.

2. D’Alembert’s formula: For the wave equation a2uxx = utt, it turns out that solutions
can be written as

u(x, t) = F (x+ at) +G(x− at)

for some functions F and G. This question will guide you through the process of using
this formula to solve wave equation problems.

(a) Show that u(x, t) = F (x+ at) +G(x− at) satisfies the wave equation.

(b) Suppose we have the initial conditions u(x, 0) = f(x) and ut(x, 0) = 0. Then
show that

F (x) +G(x) = f(x)

a(F ′(x) −G′(x)) = 0

5



(c) Use the equations from above to show that

u(x, t) =
1

2
[f(x+ at) + f(x− at)]

solves the wave equation with the given initial conditions.

3. Neumann problem for Laplace’s equation on the disk

urr +
1

r
ur +

1

r2
uθθ = 0 0 ≤ r ≤ a 0 ≤ θ < 2π

ur(a, θ) = f(θ) 0 ≤ θ < 2π

Notice that we have prescribed ur, the derivative of u in the radial direction at the
boundary of the disk, instead of u itself. This kind of a problem is known as a Neu-
mann problem.

Using the method of separation of variables, find the solution to this problem.

6


