\qquad

Review

Heat Equation (contd.)

- Non-homogeneous boundary conditions:

$$
u(0, t)=T_{1} \quad u(L, t)=T_{2}
$$

General solution:

$$
\begin{gathered}
u(x, t)=\left(T_{2}-T_{1}\right) \frac{x}{L}+T_{1}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \sin \left(\frac{n \pi x}{L}\right) . \\
c_{n}=\frac{2}{L} \int_{0}^{L}\left(f(x)-\left(T_{2}-T_{1}\right) \frac{x}{L}-T_{1}\right) \sin \left(\frac{n \pi x}{L}\right) d x
\end{gathered}
$$

- Insulated ends:

$$
u_{x}(0, t)=0 \quad u_{x}(L, t)=0
$$

General solution:

$$
u(x, t)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} c_{n} e^{-n^{2} \pi^{2} \alpha^{2} t / L^{2}} \cos \left(\frac{n \pi x}{L}\right) \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Wave Equation

- The wave equation is given by

$$
\frac{\partial^{2} u}{\partial t^{2}}=a^{2} \frac{\partial^{2} u}{\partial x^{2}}
$$

- Boundary conditions (fixed ends):

$$
u(0, t)=0 \quad u(L, t)=0 \quad \text { for } t \geq 0
$$

- Non-zero initial displacement but zero initial velocity:

$$
u(x, 0)=f(x) \quad u_{t}(x, 0)=0 \quad \text { for } 0<x<L
$$

General solution:

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi x}{L}\right) \cos \left(\frac{n \pi a t}{L}\right) \quad c_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
$$

- Zero initial displacement but non-zero initial velocity:

$$
\begin{aligned}
& u(x, 0)=0 \quad u_{t}(x, 0)=g(x) \quad \text { for } 0<x<L \\
& u(x, t)=\sum_{n}^{\infty} k_{n} \sin \left(\frac{n \pi x}{L}\right) \sin \left(\frac{n \pi a t}{L}\right) \quad \frac{n \pi a}{L} k_{n}=\frac{2}{L} \int_{0}^{L} g(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Laplace Equation

- The 2D Laplace's equation is given in rectangular (Cartesian) coordinates by

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

and in polar coordinates by

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

- Dirichlet problem on a rectangular region: $0<x<a$ and $0<y<b$ with the boundary conditions

$$
\begin{array}{lll}
u(x, 0)=0, & u(x, b)=0 & 0<x<a \\
u(0, y)=0, & u(a, y)=f(y) & 0<y<b
\end{array}
$$

General solution:

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sinh \left(\frac{n \pi x}{b}\right) \sin \left(\frac{n \pi y}{b}\right) \quad c_{n} \sinh \left(\frac{n \pi a}{b}\right)=\frac{2}{b} \int_{0}^{b} f(y) \sin \left(\frac{n \pi y}{b}\right) d y
$$

- Dirichlet problem on a disk: $r<a$ and $0 \leq \theta<2 \pi$ with the boundary condition

$$
u(a, \theta)=f(\theta) \quad 0 \leq \theta<2 \pi
$$

where f is periodic i.e. $f(0)=f(2 \pi)$ (this vaguely acts like a boundary condition in the θ variable).

General solution:

$$
\begin{gathered}
u(r, \theta)=\frac{c_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(c_{n} \cos (n \theta)+k_{n} \sin (n \theta)\right) \\
c_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \cos (n \theta) d \theta \quad n=0,1,2, \ldots \\
k_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \sin (n \theta) d \theta \quad n=1,2, \ldots
\end{gathered}
$$

Practice Problems

1. Heat equation with insulated ends:

Consider a thin pipe placed along the x-axis with ends at $x=0$ and $x=\pi$. The pipe is filled with water and a small amount of a certain chemical. The chemical spreads (diffuses) through the pipe and the concentration of the chemical at location x and time t denoted $u(x, t)$ satisfies the equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial u}{\partial t}
$$

Initially the concentration has the following distribution

$$
u(x, 0)=x \quad 0 \leq x \leq \pi
$$

The ends of the pipe are closed, so the chemical cannot escape. This can be written as

$$
u_{x}(0, t)=0 \quad u_{x}(\pi, t)=0 \quad t \geq 0
$$

(a) Assume that $u(x, t)=X(x) T(t)$ and find ODEs satisfied by X and T.
(b) Use the boundary conditions for u to derive boundary conditions for $X(x)$.
(c) Solve the resulting eigenvalue problem for $X(x)$.
(d) For each eigenvalue you found, solve the corresponding ODE for T.
(e) Take linear combinations of all the fundamental solutions $u_{n}(x, t)$ to get the general solution $u(x, t)$ of this heat equation.
(f) Finally, use the initial condition to find the coefficients C_{n}.
2. D'Alembert's formula: For the wave equation $a^{2} u_{x x}=u_{t t}$, it turns out that solutions can be written as

$$
u(x, t)=F(x+a t)+G(x-a t)
$$

for some functions F and G. This question will guide you through the process of using this formula to solve wave equation problems.
(a) Show that $u(x, t)=F(x+a t)+G(x-a t)$ satisfies the wave equation.
(b) Suppose we have the initial conditions $u(x, 0)=f(x)$ and $u_{t}(x, 0)=0$. Then show that

$$
\begin{gathered}
F(x)+G(x)=f(x) \\
a\left(F^{\prime}(x)-G^{\prime}(x)\right)=0
\end{gathered}
$$

(c) Use the equations from above to show that

$$
u(x, t)=\frac{1}{2}[f(x+a t)+f(x-a t)]
$$

solves the wave equation with the given initial conditions.
3. Neumann problem for Laplace's equation on the disk

$$
\begin{array}{ll}
u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0 & 0 \leq r \leq a \quad 0 \leq \theta<2 \pi \\
u_{r}(a, \theta)=f(\theta) & 0 \leq \theta<2 \pi
\end{array}
$$

Notice that we have prescribed u_{r}, the derivative of u in the radial direction at the boundary of the disk, instead of u itself. This kind of a problem is known as a Neumann problem.

Using the method of separation of variables, find the solution to this problem.

